Cancer and cardiovascular disease together are leading causes of death worldwide, and cancer patients display an abnormally elevated burden of cardiovascular disease. Neutrophils—key immune cells known primarily by their roles in inflammation and infection—can link these two pathological conditions. Neutrophils contribute to cancer progression and cardiovascular complications through various mechanisms, including their ability to promote inflammation, thrombosis, and vascular damage by interacting with vascular endothelial cells, platelets, and other immune cells, or by forming NETs. In cancer, neutrophils contribute to a hypercoagulability state, which promotes tumor growth and metastasis, and can also lead to thrombotic events, myocardial infarction, and stroke. Cancer affects neutrophil numbers and functional properties, induces the appearance of several neutrophil subtypes, and can alter hematopoiesis. Here we summarize the links between cancer and cardiovascular disease, focusing on the role of neutrophils and cancer-elicited changes to their function in connecting these two disease states and highlighting the neutrophils’ dynamic interaction with both diseases.

Introduction

Cancer and cardiovascular disease (CVD) are the second and first causes of death, respectively (Heron, 2021). Many risk factors are shared between the two, including smoking, obesity, low physical activity, high-fat diet, chronic inflammation, hypertension, or clonal hematopoiesis (CH) (Handy et al., 2018), and numerous clinical reports show a correlation between cancer and CVD. For instance, lung cancer patients have a 90% increase in the risk of coronary artery disease and over a 66% increased risk of overall CVD compared with the general population (Kravchenko et al., 2015; Yuan and Li, 2018). Acute cardiovascular events are, thus, common drivers of cancer patient mortality (Boire et al., 2024).

Cancer treatment is a prime suspect for the disproportionate burden of CVD in cancer patients. Stemming from seminal studies on the cardiotoxic effect of anthracyclines (Von Hoff et al., 1979), many different approaches used for cancer therapy have now been shown to be detrimental for the cardiovascular system (Chung et al., 2018; De Keulenaer et al., 2010; Jaworski et al., 2013; Cheng and Force, 2010), leading to the establishment of a new cardio-oncology discipline and practice (Cubbon and Lyon, 2016; Pareek et al., 2018). Importantly, however, treatment-naïve cancer patients are also at higher risk of CVD compared with the general population (Bradshaw et al., 2016; Cramer et al., 2014; Pavo et al., 2015), suggesting that treatment-independent effects are also at play. These treatment-independent effects are related to cancer-imposed changes to its host macroenvironment. Of those, changes to the immune compartment are well documented (Hiam-Galvez et al., 2021) and likely to contribute to cancer-driven CVD.

Neutrophils are the first line of defense of the organism, can rapidly migrate to inflamed sites, and exert several effector functions to deal with tissue injury. These effector functions include phagocytosis, production of high amounts of ROS, release of the cytotoxic content of their granules (Borregaard et al., 2007), or neutrophil extracellular trap (NETs) formation (Brinkmann et al., 2004; Papayannopoulos, 2018; Hidalgo et al., 2022). Neutrophils are prominently involved in CVD (Haumer et al., 2005; Shah et al., 2017; Silvestre-Roig et al., 2020; Luo et al., 2023; Morrissey et al., 2025). Their transcriptional profile and function can be modulated in the steady state by cell-intrinsic, systemic, or tissue-specific cues (Adrover et al., 2019; Casanova-Acebes et al., 2018; Ballesteros et al., 2020; Adrover et al., 2020), as well as by disease states. Cancer, in particular, significantly influences neutrophil properties, with both pro-tumorigenic and anti-tumorigenic neutrophil subpopulations described in different cancer contexts (Ng et al., 2025).

Traditionally, cancer research has focused on genetic alterations of the cancerous cells themselves, only to later acknowledge the critical role of the microenvironment where these cells reside (Koliaraki et al., 2020). Current research, however, has begun to pay more attention to the whole-body “macroenvironment” (Swanton et al., 2024; Rabas et al., 2024), as cancer cells induce not only local but also distant changes to their host.

The realization that cancer elicits global changes to the host is not new; in the 19th century, Armand Trousseau established that cancer patients are at heightened risk of thrombosis and that thromboembolic disease in an otherwise healthy individual was, with a substantial likelihood, secondary to an occult malignancy (Silverstein and Nachman, 1992). Since then, many observations suggest that cancer is a systemic disease and that the tumor macroenvironment is a key driver of cancer progression.

Although tumor immunologists have classically focused on the local immune response at the tumor site, the immune system is deeply coordinated across whole-body physiology. Inflammation is a hallmark of cancer, and the immune system is the system that is most directly and profoundly affected by it (Coussens and Werb, 2002). Many immune system compartments, both adaptive and innate, are affected by growing tumors (Allen et al., 2020): immature monocytes are released early into the circulation and can become immunosuppressive, while dendritic cells, which are key orchestrators of adaptive immunity (Cabeza-Cabrerizo et al., 2021), are reduced in number and defective in many human cancers and mouse models (Almand et al., 2001; Bella et al., 2003; Tabarkiewicz et al., 2008; Lin et al., 2020). Macrophages acquire anti-inflammatory programs, and many of their functions are co-opted by growing tumors (Kloosterman and Akkari, 2023), and natural killer cells are progressively dysfunctional during cancer progression (Mamessier et al., 2011). A reduced number of T cells is a common phenomenon in several types of cancer (Ray-Coquard et al., 2009), and the remaining cells can show a reduced TCR repertoire, which is associated with reduced anti-tumor activity (Manuel et al., 2012; Liu et al., 2019b). Interestingly, the number of regulatory T cells (Liyanage et al., 2002; Wolf et al., 2003) and regulatory B cells (Murakami et al., 2019) is increased in cancer patients. Thus, while the rest of this review will focus on neutrophils, cancer affects the immune system profoundly and systemically beyond the local microenvironment.

Neutrophils in cancer

Neutrophils are vastly affected by cancer (Quail et al., 2022; Maas et al., 2023; Adrover et al., 2023; Ng et al., 2025) and represent the most adverse prognostic cell type in pan-cancer studies (Gentles et al., 2015; Templeton et al., 2014). Neutrophils originate from hematopoietic stem cells in the bone marrow, through common myeloid progenitors, granulocyte-monocyte progenitors, and recently described unipotent neutrophil progenitors (Zhu et al., 2018; Kwok et al., 2020; Evrard et al., 2018). Neutrophil production is controlled by an array of transcription factors (Lawrence et al., 2018), including purine-rich box 1 (PU.1), CCAAT/enhancer-binding protein alpha, beta, and epsilon (C/EBPBα, C/EBPBβ, and C/EBPBε), growth factor independent 1 (Gfi-1), and GATA-binding factor 1 (GATA-1). Before exiting to the bloodstream, neutrophils spend up to 6 days in the bone marrow (Dancey et al., 1976) under control of antagonistic chemokine signaling between the pro-mobilizing CXC motif chemokine receptor 2 (CXCR2) and the pro-retention CXC motif chemokine receptor 4 (CXCR4) (Eash et al., 2010; Martin et al., 2003).

Neutrophils are short-lived (Dancey et al., 1976; Hidalgo et al., 2019; Adrover et al., 2019, 2020), but at the same time, they are the most abundant immune cell in the human circulation. Not surprisingly, the hematopoietic system devotes two-thirds of its resources just to replenish neutrophils (Borregaard, 2010), and this has been estimated to involve the production of ∼2 × 1011 neutrophils each day (Kolaczkowska and Kubes, 2013; Scheiermann et al., 2015). Many factors that regulate neutrophil life cycle are highly expressed by tumors, causing a dysregulation of neutrophil maturation, lifespan, and effector functions in cancer (Adrover et al., 2023). One such process altered in cancer is the rate of neutrophil production in the bone marrow compartment. Cancer patients display a myeloid skew of hematopoiesis and harbor an increased number of granulocyte-monocyte progenitors (Wu et al., 2014). The same is true for preclinical breast, skin, and pancreatic cancer models (Casbon et al., 2015; Khaled et al., 2014; Kamran et al., 2018). This drives a systemic alteration of neutrophil function, contributing to tumor progression and cancer-associated thrombosis (Demers et al., 2012). Hematopoietic progenitor cells can sense and respond to peripheral inflammation cues (Chavakis et al., 2019), and, in cancer, factors produced by a variety of cells have been proposed to drive hematopoietic adaptation, including granulocyte CSF (G-CSF) (Casbon et al., 2015), GM-CSF (Almand et al., 2001; Morales et al., 2010), IL-17 (Coffelt et al., 2015), IL-8 (Dominguez et al., 2017), TNFα (Al Sayed et al., 2019), IL-1β (Aggen et al., 2021), Receptor for advanced glycation endproducts (Engblom et al., 2017), and cancer cell–derived exosomes (Peinado et al., 2012). How all these pieces coordinate is still unclear but, nonetheless, the altered hematopoietic output leads to changes in the lymphoid/myeloid ratio, and together with the effect of various other cancer cell– or tumor stromal cell–produced mediators (a prime example of which is TGF-β [Fridlender et al., 2009]), ultimately lead to the appearance of distinct neutrophil subpopulations either systemically or within the tumor microenvironment (TME).

Cancer-associated neutrophils exhibit a dual nature, capable of both inhibiting and promoting tumor growth and metastasis. This duality stems from their plasticity and responsiveness to environmental cues systemically and within the TME (Baghban et al., 2020). The TME is a local inflammatory microenvironment comprising tumor cells, immune cells, endothelial and stromal cells, as well as extracellular matrix components that support tumor initiation, development, and metastasis (De Visser and Joyce, 2023). Neutrophils are now considered to be one of the major participants of the TME and have been shown to make up a substantial proportion of the immune infiltrate in a wide variety of cancer types, including non-small cell lung cancer (Rakaee et al., 2016), renal cell carcinoma (Jensen et al., 2009), colorectal cancer (Rao et al., 2012), breast cancer (Lotfinejad et al., 2020), melanoma (Jensen et al., 2012), and hepatocellular carcinoma (Li et al., 2011). These tumor-associated neutrophils are typically associated with poor prognosis (Shen et al., 2014; Gentles et al., 2015), but subpopulations with both pro- and anti-tumor functions have been described and are outlined below.

The apparent conundrum of pro- and anti-tumoral neutrophil states (Fig. 1) may stem from the different ways in which various cancer types affect neutrophil biology and respond to neutrophil-driven signals. Indeed, neutrophils are not a homogeneous population, as once assumed, and many studies have highlighted that neutrophils, despite their short lifespan, can differentiate into different subpopulations that exert diverse functions (Hedrick and Malanchi, 2022; Yu et al., 2024; Ballesteros et al., 2020; Adrover et al., 2019; Casanova-Acebes et al., 2018; Nicolás-Ávila et al., 2017). A recent example is that neutrophils gain a matrix-producing phenotype upon TGF-β stimulation and are able to actively deposit collagen fibers (Vicanolo et al., 2025). Studies in the last decade have started to unravel this neutrophil heterogeneity and have led to new frameworks for neutrophil adaptation (Ng et al., 2019, 2025).

Early reports showed that neutrophils can adapt and change in the TME and proposed a skew from an anti-tumorigenic “N1” to a pro-tumorigenic “N2” phenotype of neutrophils driven by TGF-β signaling in cancer (Fridlender et al., 2009). N1 neutrophils enhance cytotoxic T cell recruitment and activation by secreting chemokines (e.g., CXCL9 and CXCL10) and cytokines (e.g., IL-12, TNFα, and GM-CSF) (Fridlender et al., 2009). Conversely, N2 neutrophils suppress cytotoxic T cells and recruit regulatory T cells, leading to immune tolerance and tumor progression (Mishalian et al., 2014).

Other reports indicated that neutrophils change systemically as well as within the TME with cancer progression, with a systemic accumulation of immunosuppressive neutrophils (Sagiv et al., 2015). Cytokines like G-CSF and IL-6 modulate neutrophil phenotypes in the bone marrow, driving pro-tumoral neutrophil behaviors (Yan et al., 2013). Furthermore, we have recently shown that cancer can remotely affect the bone marrow to induce a myeloid skew of hematopoiesis and induce the appearance of a subpopulation of vascular-restricted neutrophils (vrPMNs). vrPMNs do not extravasate toward inflammatory insults but are highly reactive inside the vasculature, form NETs more efficiently, and interact more with platelets. We show that neutrophils block the blood flow in the tumor vasculature in a NET-dependent manner, causing tumor necrosis, which in turn enhances metastatic spread (Adrover et al., 2025).

Neutrophil phenotypes also seem to change in the TME, where a population of CD14+-immunosuppressive neutrophils was identified (Veglia et al., 2021). A population of SiglecFHigh neutrophils stemming from tumor-induced changes to the marrow stromal compartment was also found to show pro-tumorigenic properties (Engblom et al., 2017). Conversely, a population of SiglecFLow CD74High neutrophils has recently been proposed to be able to cross-present antigen (Tang et al., 2024) and have anti-tumorigenic functions. Neutrophils have been proposed to gain APC capability through several mechanisms: cytokines, such as GM-CSF (Matsushima et al., 2013) can induce the expression of MHC-II, CD80, and CD86 by neutrophils and stimulate lymphocyte proliferation (Hampton et al., 2015), and upon direct contact with T cells (Abi Abdallah et al., 2011). Nonetheless, the precise mechanisms of antigen processing by neutrophils and their functional relevance in cancer or CVD are still poorly understood.

Another recent study found three distinct intratumoral neutrophil states: T1 (immature), T2 (mature), and T3 (dcTRAIL-R1+), which were different from blood, bone marrow or splenic neutrophils and showed a deterministic path of differentiation from T1/T2 to T3 state in several tumor models (Ng et al., 2024). This work suggested that neutrophils, regardless of their maturation state, can reach a definite state in the TME (T3), which was associated with an increased lifespan and with hypoxic and glycolytic niches within the context of pancreatic ductal adenocarcinoma tumors, where they were pro-angiogenic.

Most of the reports of neutrophil function in cancer show them promoting tumor initiation, progression, and metastatic spread. For instance, neutrophils can elicit malignant transformation by inducing DNA damage through ROS (Weitzman and Stossel, 1981; Weitberg et al., 1983; Weitzman et al., 1985; Canli et al., 2017; Wculek et al., 2020) or by producing pro-inflammatory microRNA-bearing microparticles (Butin-Israeli et al., 2019). They also promote tumor progression by releasing different mediators, including prostaglandin E2 (PGE2) to promote cancer cell proliferation (Antonio et al., 2015), IL-1 receptor antagonist (IL-1RA) that protects prostate cancer cells from senescence (Di Mitri et al., 2014), matrix metalloproteinase-9 (MMP-9) to activate vascular endothelial growth factor (Nozawa et al., 2006; Deryugina et al., 2014), prokineticin-2 (Bv8) to promote angiogenesis (Shojaei et al., 2007), or neutrophil elastase, which degrades insulin receptor substrate 1 (IRS-1) and induces cancer cell proliferation (Houghton et al., 2010). Neutrophils can also directly provide lipids to cancer cells to fuel cancer cell proliferation (Li et al., 2020).

Neutrophils contribute to immune suppression by several mechanisms, including suppressing T cell function through expression of programmed cell death ligand 1 (PD-L1) (He et al., 2015; Wang et al., 2017), direct physical contact (Thewissen et al., 2011), suppressing IL-17+ γδ T cells (Mensurado et al., 2018), and recruiting regulatory T cells or macrophages (Zhou et al., 2016; Wang et al., 2021a). Neutrophils also promote metastatic spread, for instance, by producing leukotrienes to aid cancer cell proliferation (Wculek and Malanchi, 2015), forming clusters with circulating cancer cells that expand their metastatic potential (Szczerba et al., 2019), or helping establish a pro-metastatic niche (Bald et al., 2014; Casbon et al., 2015; Coffelt et al., 2015; Wculek and Malanchi, 2015; Spiegel et al., 2016; He et al., 2024). Neutrophils also produce NETs in the context of cancer, and NETs have been implicated in virtually all stages of tumorigenesis, progression, and metastasis (Adrover et al., 2023).

NETs are web-like, filamentous extracellular structures released by neutrophils in response to supernumerary (Brinkmann et al., 2004) or oversized (Branzk et al., 2014) pathogens, but are also released in sterile injuries (Jorch and Kubes, 2017). NETs trap pathogens in a meshwork of DNA, histones, proteases, and cytolytic and pro-inflammatory compounds (Brinkmann et al., 2004; Pham, 2006; Jaillon et al., 2007; Lauth et al., 2009; Urban et al., 2009; Kessenbrock et al., 2009; Papayannopoulos, 2018) and are, therefore, highly cytotoxic and pro-thrombotic structures.

NETs expose more than 500 proteins (Rayes et al., 2020), many of which can affect cancer directly. For instance, MMP9 is a key neutrophil protease associated with NETs (Egeblad and Werb, 2002), and it can induce vascular dysfunction by causing endothelial cell damage (Carmona-Rivera et al., 2015), while also inducing angiogenesis (Ardi et al., 2007). NET-bound cathepsin G can activate metalloproteases and proteolyze many extracellular matrix components to enable cancer cell invasion (Guan et al., 2021). Histones within NETs can damage endothelial cells directly, as they are inherently cytotoxic (Parseghian and Luhrs 2006; Silvestre-Roig et al., 2019), while NET-associated DNA physically traps circulating cancer cells to allow metastatic colonization (Cools-Lartigue et al., 2013; Najmeh et al., 2017) and acts as a scaffold to concentrate protease activity on ECM substrates (Albrengues et al., 2018).

NETs play important roles in tumor establishment, progression, aggressiveness, and dissemination. Several cancer cell lines induce NET formation, and NETs, in turn, stimulate cancer cell invasion (Park et al., 2016; Jung et al., 2019; Nie et al., 2019; Jin et al., 2021), metastatic dissemination (Cools-Lartigue et al., 2013; Ren et al., 2021), and tumor growth, leading to reduced survival (Miller-Ocuin et al., 2019). NETs can also affect tumor metabolism, as NET-derived neutrophil elastase stimulates TLR4 signaling on tumor cells to enhance mitochondrial production of ATP, thereby increasing primary tumor growth (Yazdani et al., 2019). Furthermore, NETs seem to be present in premetastatic tissues before overt metastasis takes place (Lee et al., 2019; Rayes et al., 2019; Yang et al., 2020) and can awaken dormant disseminated cancer cells (Albrengues et al., 2018). NETs also impair adaptive immune responses, for instance, by acting as a physical barrier that limits cancer cells and cytotoxic natural killer or T cell interaction (Teijeira et al., 2020; Xia et al., 2020) or by exposing PD-L1 (Kaltenmeier et al., 2021). In consequence, NET inhibition can improve response to immunotherapy (Teijeira et al., 2020).

While most reports show that neutrophils and NETs are pro-tumoral, they can also show anti-tumor behaviors. For instance, NETs can limit the migration and proliferation of melanoma cells in vitro (Schedel et al., 2020) and promote the activation of CD4+ T cells in co-culture (Tillack et al., 2012). Neutrophils can kill cancer cells by producing ROS or reactive nitrogen species (Fridlender et al., 2009; Granot et al., 2011; Finisguerra et al., 2015; Mahiddine et al., 2019), by expressing TNF-related apoptosis-inducing ligand (Koga et al., 2004), by inducing cancer cell detachment from the basement membrane (Blaisdell et al., 2015), or by mechanically disrupting the cancer cell’s plasma membrane, in a process termed trogoptosis (Matlung et al., 2018). Neutrophils can also stimulate adaptive immune responses against tumors. For instance, neutrophils can directly activate T cells (Radsak et al., 2000; Eruslanov et al., 2014), present antigens (Beauvillain et al., 2007; Singhal et al., 2016; Tang et al., 2024), and promote the anti-tumoral polarization of unconventional αβ T cells (Ponzetta et al., 2019).

Cancers can communicate with neutrophils or their progenitors through various mediators produced by cancer cells themselves or by the TME (Fig. 2), including G-CSF to control granulopoiesis (Nishizawa et al., 1990; Manz and Boettcher, 2014; Casbon et al., 2015) and mobilization from the marrow (Semerad et al., 2005; Christopher et al., 2009). Other cancer-produced growth factors and cytokines such as GM-CSF, IL-6, IL-1β, and IL-17 also affect hematopoiesis (Forlow et al., 2001; Morales et al., 2010; Manz and Boettcher, 2014; Aggen et al., 2021). Several chemokines, such as CXCL1, CXCL2, CXCL5, CXCL6, and IL-8, act to recruit circulating neutrophils to the tumor (Jamieson et al., 2012; Park et al., 2016; Mollica Poeta et al., 2019). While signaling through CXCR2 is a prime chemoattracting signal for neutrophils, it also has other roles in neutrophil biology, such as accelerating the acquisition of an aged phenotype (Adrover et al., 2019), but whether tumor-released CXCR2 ligands (such as CXCL1 or CXCL2) affect this phenomenon remains to be understood. Pro-angiogenic factors like vascular endothelial growth factor A (VEGFA) can also attract neutrophils to the TME, likely toward hypoxic regions (Zittermann and Issekutz, 2006). Furthermore, apoptosis of cancer cells leads to the release of IL-8 to attract neutrophils in colorectal cancer (Schimek et al., 2022). IL-8 and other signals induce the formation of NETs (Adrover et al., 2023; Teijeira et al., 2021), including the loss of histidine-rich glycoprotein (Yin et al., 2023), or the expression of cathepsin C (Xiao et al., 2021). Cancer cells can also suppress neutrophil functions through direct interaction (Yajuk et al., 2021; Huo et al., 2022). Finally, cancer treatments can affect neutrophil function, for instance, by modifying their migration ability (Mendonça et al., 2006) or their release from the bone marrow (Yu et al., 2022).

Neutrophils are also affected in premalignant conditions, such as CH. CH refers to the acquisition of somatic mutations in hematopoietic stem cells that confer a self-renewal, proliferative, or survival competitive advantage over neighboring cells (Weeks and Ebert, 2023). Most common mutations take place in epigenetic regulators, such as TET2, DNMT3A, or ASXL1, but also in signal transduction genes like JAK2 or DNA damage response, such as TP53 (Genovese et al., 2014). While somatic mutations are common with age (Martincorena, 2019), the hematopoietic system is among the most affected systems because of its high turnover rate. CH is seldom detected in individuals under 40 years of age, but it may be an inevitable phenomenon in the elderly (Zink et al., 2017). While CH is a premalignant state, the relative progression risk is low (Jaiswal et al., 2014), but it can lead to hematological malignancies, particularly myeloid neoplasms (Genovese et al., 2014; Jaiswal et al., 2014; Desai et al., 2018). CH is common as well in patients with solid tumors, especially in ovarian, thyroid, lung, and kidney cancers (Bolton et al., 2020; Kar et al., 2022), and it leads to increased inflammatory and neutrophil-related gene signatures in several cancer types (Fairchild et al., 2023). But treatment regimens in cancer patients make interpretation of these data difficult, as genotoxic stress (i.e., radiation or chemotherapy) can drive therapy-related CH or enhance preexisting CH (Coombs et al., 2017; Gillis et al., 2017) in cancer patients.

Beyond cancer, CH is associated with a variety of disease manifestations, most notably CVD. CH associates (an association as strong as that of smoking, hyperlipidemia, and diabetes) with increased risk of coronary heart disease, myocardial infarction (MI), ischemic stroke, atherosclerosis (Jaiswal et al., 2017; Fuster et al., 2017), and nonischemic heart failure (Yura et al., 2021). DNMT3A or TET2 mutations accelerate disease progression and increase all-cause mortality risk in ischemic heart failure patients (Dorsheimer et al., 2019; Li et al., 2025). Beyond CVD, individuals with CH are at higher risk for a variety of other conditions, including chronic lung disease (Miller et al., 2022), chronic liver disease (Wong et al., 2023), diabetes (Jaiswal et al., 2014), gout (Agrawal et al., 2022), autoimmune disease (Tanaka et al., 2020), and infection (Quin et al., 2024; Zekavat et al., 2021). In most cases, the effect of CH in these diseases revolves around increased inflammation.

Clonally expanded, mutated stem cells produce progeny carrying the same mutations, leading to altered downstream immune cell number or function. CH is associated with increased amounts of circulating neutrophils and platelets (Kar et al., 2022; Zekavat et al., 2021). Most notably, TET2 mutation causes a myeloid bias of hematopoiesis, a myeloid-rich TME (Pich et al., 2025), and endows myeloid cells with increased pro-inflammatory ability (Fairchild et al., 2023). TET2 deficiency alters neutrophil function, promotes the production of immature neutrophils, and enhances neutrophil expression of pro-inflammatory mediators (such as IL-6 or IL-1β), while reducing neutrophil phagocytosis, motility, and extravasation. TET2-mutant neutrophils also produce NETs that are more resistant to degradation (Huerga Encabo et al., 2023; Quin et al., 2024; Fuster et al., 2017; Agrawal et al., 2022).

Neutrophils, thus, are greatly affected by growing tumors, as well as by premalignant states such as CH. Importantly, their behavior is affected systemically. It is, thus, conceivable that these reprogrammed neutrophils then show altered behaviors in sites other than the tumor itself and, as such, could be involved in the heightened CVD that cancer patients endure.

Cancer and CVD

CVD and cancer together account for nearly 70% of disease-related deaths in developed countries (Von Itter and Moore, 2024; Sturgeon et al., 2019). Recent research has increasingly shown that cancer patients face a substantially higher risk of developing CVD (Florido et al., 2022; Paterson et al., 2022) and that CVD is not only highly prevalent but also remains a leading cause of death among cancer survivors (Miller et al., 2019; Sturgeon et al., 2019). Furthermore, cancer diagnosis is linked to an elevated risk for CVD across disease manifestations, including heart failure (Marenzi et al., 2025), stroke (Zaorsky et al., 2019), MI (Guo et al., 2021), and venous thromboembolism (VTE) (van Es et al., 2014).

So far, research has been mostly focused on the contribution of cancer therapy, but treatment-naïve cancer patients also display abnormally elevated levels of CVD (Bradshaw et al., 2016), suggesting that treatment is not the only factor at play. One additional, non-mutually exclusive explanation lies in the broad effects that cancer elicits in the host and, particularly, in the changes that it elicits on the hematopoietic compartment and on neutrophils. In fact, in patients with cancer and CVD, an elevated neutrophil-to-lymphocyte ratio (NLR) is linked to higher mortality rates (Cassidy et al., 2017). Higher NLR values are also associated with deleterious outcomes in cancer treatment-related cardiotoxicity (Akinci Ozyurek et al., 2017; Drobni et al., 2020b). This suggests that NLR or other inflammation markers could be a useful tool for risk stratification in patients (Ridker et al., 2000; Zhan et al., 2021; Higaki et al., 2022).

Interestingly, many of the risk factors shared between cancer and CVD affect neutrophils directly. Obesity (McDowell et al., 2021), high-fat diet (D’Abbondanza et al., 2019), hypercholesterolemia (Warnatsch et al., 2002), smoking (Albrengues et al., 2018), CH (Wolach et al., 2018; Huerga Encabo et al., 2023), or hypertension (McCarthy et al., 2021) all increase the likelihood of neutrophils forming NETs. On the other hand, NETs are critically involved in cancer, as outlined above (Adrover et al., 2023), but also in CVD (Bonaventura et al., 2020), including in atherosclerosis (Knight et al., 2014; Warnatsch et al., 2002), MI (Mangold et al., 2015), and stroke (Peña-Martínez et al., 2019; Peña-Martínez et al., 2022). Importantly, NETs are also known drivers of intravascular inflammation and thrombosis (Gómez-Moreno et al., 2018), which are highly prevalent complications in both cancer (Pantazi et al., 2024; Demers et al., 2012; Rosell et al., 2022) and CVD (Stark and Massberg, 2021).

Thrombosis

Thrombosis refers to the formation of blood clots within the vasculature, which impair blood flow and can result in tissue infarction of areas downstream of the affected vessel, with significant clinical consequences (Mackman, 2008). Neutrophils play prominent roles in thrombosis (Fig. 3) through their interaction with platelets (von Brühl et al., 2012; Hidalgo et al., 2009; Sreeramkumar et al., 2014) and through NET formation (Fuchs et al., 2010; Maugeri et al., 2014). Interestingly, neutrophils can be recruited to the damaged endothelium even before platelets (Darbousset et al., 2014), and although platelets are the prime players in thrombosis, NETs can also induce platelet-independent clots (Jiménez-Alcázar et al., 2017).

VTE, which includes both deep vein thrombosis (DVT) and pulmonary embolism, can act as an early warning of cancer (Fernandes et al., 2019), as it is often the first presenting symptom in individuals with undiagnosed malignancy (Otten and Prins, 2001). VTE is the second most common preventable cause of death in cancer (Lyman et al., 2021), and cancer patients have a higher incidence and recurrence rate of VTE than other patient groups (Grilz et al., 2021; Timp et al., 2013). In a study examining risk factors for VTE, individuals with cancer had a fourfold higher risk of developing thrombosis compared with those without cancer (Mulder et al., 2021). Additionally, cancer patients with VTE experienced a twofold or greater increase in mortality compared with cancer patients without VTE (Lee and Levine, 2003).

These findings highlight the importance of understanding how the hypercoagulable state of cancer is established. VTE is triggered by a combination of plasma hypercoagulability, blood flow vortices, stasis, and endothelial activation (Mackman, 2012). Risk factors for VTE, including thrombocytosis (Sylman et al., 2017), tissue factor (Zwicker et al., 2009), cytokines, soluble P-selectin (Ay et al., 2008), and elevated coagulation factors in cancer, can contribute to the prothrombotic state (Connolly and Khorana, 2010; Demers et al., 2012; Hisada and Mackman, 2017). Furthermore, several studies have shown that leukocytosis (high levels of white blood cells in circulation) is linked to an increased risk of VTE in lung (Kasuga et al., 2001) and colorectal cancer patients (Hajebi et al., 2021), suggesting that leukocytosis may be common in cancer-associated thrombosis (Hisada and Mackman, 2017; Khorana et al., 2008). Leukocytosis is, however, a vague term, and further research is needed to understand which specific immune populations are at play. Interestingly, neutrophils are often increased in cancer patients (Schmidt et al., 2005; Antoine et al., 1998; Lechner et al., 2010; Templeton et al., 2014) and are critically involved in VTE (Stewart, 1993; von Brühl et al., 2012; Kushnir et al., 2016). Beyond numbers, activation of neutrophils and NET formation have also been associated with the pathogenesis of VTE (Dhanesha et al., 2023). NETs are particularly relevant (Martinod et al., 2013), to the point that the circulating levels of citrullinated histone H3 (a marker for NETs) predict the risk of VTE in cancer patients (Mauracher et al., 2018). NETs bind active coagulation factor XII, which stimulates further adhesion and NET formation (Schmaier and Stavrou, 2019), and contain tissue factor (Kambas et al., 2012), both of which trigger the coagulation cascade (Kambas et al., 2012).

As discussed above, cancer can promote NET formation in multiple ways, and NETs interact with the endothelium, platelets, erythrocytes, and coagulation factors to stimulate thrombus formation (Thålin et al., 2019) and coagulation in DVT (Fuchs et al., 2012), ultimately driving fibrin deposition in venous thrombosis (Fuchs et al., 2010). The signaling pathways underlying the induction of NETs in DVT are not yet fully understood, but ROS (Gutmann et al., 2020) and IL-8 (Van Aken et al., 2002) have been proposed to play an important role. Of note, IL-8 is often elevated in cancer patients (Waugh and Wilson, 2008; Todorović-Raković and Milovanović, 2013) and can directly trigger NET formation (An et al., 2019).

MI and stroke

Arterial thromboembolism (ATE) refers to the obstruction of an artery by a clot (thrombus) or an embolus, which can be a traveling clot or other materials, such as ruptured atherosclerotic plaques. This blockage obstructs blood flow, resulting in ischemia and damage to the tissues perfused by the affected artery (May and Moll, 2021). This can occur in different vascular areas, such as the brain (resulting in a stroke [Chen et al., 2011]), the heart (causing a MI [Rinde et al., 2017]), the kidneys, or the legs (leading to acute limb ischemia (Wang et al., 2021b). ATE represents a significant challenge, contributing to increased mortality and morbidity rates among cancer patients (Balomenakis et al., 2023). Patients with a newly diagnosed cancer experience a substantially elevated short-term risk of ATE (Navi et al., 2017), and ATE risk increases by 70% in elderly patients (Navi et al., 2019). The risk of ATE seems to be highest in lung and colorectal cancer (Navi et al., 2019; Guo et al., 2021).

Ischemic stroke is one of the leading causes of death globally (Bogiatzi et al., 2014), and it is widely acknowledged as a complication of cancer (Herrmann, 2020; Lindvig et al., 1990). A stroke can occur at any point during the course of the disease in 5% of cancer patients (Salazar-Camelo et al., 2021) and may be the first symptom in up to 3% of patients with an occult malignancy (Cocho et al., 2015; Taccone et al., 2008; Xie et al., 2024). MI is another leading cause of death and disability globally (Thygesen et al., 2007). The relative risks for MI and ischemic stroke in cancer patients are similar (Navi et al., 2019). Beyond increased incidence, individuals with a prior cancer diagnosis and MI had lower lipid profiles (LDL, triglycerides and cholesterol) than non cancer patients (Koo et al., 2021), and experience higher postMI mortality than those without cancer (Pothineni et al., 2017), potentially due to a sustained pro-inflammatory state and vascular toxicity from cancer treatments (Libby and Kobold, 2019). Chemotherapy is known to cause cardiotoxicity (Economopoulou et al., 2015), while immunotherapy (Matzen et al., 2021) and radiotherapy can accelerate atherosclerosis and coronary artery disease (Kwok et al., 2021). Furthermore, immune checkpoint inhibitors (ICIs) have been associated with a threefold higher risk for atherosclerotic cardiovascular events, including MI (Drobni et al., 2020a). This link between ICIs and cardiovascular complications (Green et al., 2023) is currently under active investigation. Retrospective studies have reported an increased incidence of VTE following ICI therapy (Allouchery et al., 2022). Furthermore, a commonly reported complication of ICI is myocarditis (Berg et al., 2017; Johnson et al., 2016), which causes immune cell infiltration into the cardiac sinus, cardiac tissue, and atrioventricular nodes (Mahmood et al., 2018). Interestingly, patients under ICI who develop myocarditis have been shown to have changes in the proportion of circulating neutrophils (Drobni et al., 2020b).

Neutrophils are considered detrimental in the acute phase of MI (Zhang et al., 2022) and are among the first immune cells to infiltrate the infarcted myocardium to propagate inflammation (Fig. 3), with their numbers peaking around 24–48 h after the acute event (Ma et al., 2016). During this initial phase, their influx contributes to acute myocardial injury, for example, through the release of proteolytic enzymes that weaken the structural integrity of the myocardium (Romson et al., 1983) or through ROS production (El Kazzi et al., 2020; Carbone et al., 2020), especially during reperfusion (Jolly et al., 1986). Neutrophil-derived serine proteases can also activate the coagulation cascade and cause the occlusion of large vessels, leading to arterial thrombosis (Massberg et al., 2010). NETs also play a detrimental role in acute MI (Liu et al., 2019a; Langseth et al., 2020; Ge et al., 2015; Savchenko et al., 2014). As discussed above, cancer can promote NET formation, ROS production, and the release of neutrophil proteases, which could potentially lead to worsened MI outcomes. Neutrophils also release many pro-inflammatory factors, including MIP-1α, CCL5, CXCL1, CXCL2, S100A8, S100A9, and IL-1β that, collectively, drive further immune cell influx (Daseke et al., 2021) and polarize macrophages to a pro-inflammatory phenotype. Through inflammasome activation, this leads to further IL-1β production (Kawaguchi et al., 2011), which inhibits fibroblast function and, together with neutrophil-derived proteases like MMP8, leads to collagen degradation (Saxena et al., 2013). IL-1β and neutrophil-released alarmins further drive granulopoiesis to enhance systemic neutrophil availability (Sreejit et al., 2020). At later stages, neutrophils start to show anti-inflammatory functions (Ma et al., 2016) and release fibronectin or fibrinogen (Daseke et al., 2019), which in turn promote fibroblast activity (Gray et al., 1993). Neutrophils then die by apoptosis and are phagocytosed by macrophages to induce pro-repair macrophage polarization (Peet et al., 2020). The conversion from pro-inflammatory to pro-resolving neutrophils over time in AMI is critical, as evidenced by studies blocking this conversion that show worsened remodeling and outcome (Iyer et al., 2015).

The circadian status of neutrophils and the acquisition of an “aged” phenotype are important in MI, as the presence of aged neutrophils in circulation worsens the outcome of acute MI (Adrover et al., 2019). Neutrophil ageing refers to the phenotypic changes experienced by neutrophils from the time they are released into blood to their disappearance from the circulation. Aged neutrophils show a hyper-segmented nucleus, low extravasation ability toward inflammatory stimuli, and are identified as CD62LLow, CXCR2Low, and CXCR4High neutrophils (Aroca-Crevillén et al., 2020). In this line, it is intriguing to note that cancer can promote the ageing of circulating neutrophils (Mittmann et al., 2021; Yang et al., 2021), and aged neutrophils have been shown to promote intravascular coagulation (Adrover et al., 2019).

Interestingly, neutrophil subsets similar to some found in the context of cancer have been found in MI: SiglecFHigh neutrophils with increased phagocytosis and ROS production ability increase over time in the cardiac tissue after MI (Vafadarnejad et al., 2020). The acquisition of SiglecF has been proposed to drive neutrophil apoptosis to promote the resolution of inflammation. Studies also found the presence of N1 pro-inflammatory neutrophils (expressing Ccl3, Il1b, Il12a, and Tnfα) in the heart upon MI, which shifted over time toward an N2 (expressing Cd206 and Il10) anti-inflammatory phenotype (Ma et al., 2016). What the different subsets of neutrophils present in the cardiac tissue do in the context of cancer, and what other cancer-associated neutrophil subtypes do in MI remains, however, to be explored.

Atherosclerosis

Atherosclerosis is a progressive inflammatory disease of large arteries, characterized by an accumulation of lipids, inflammatory cells, and fibrous tissue in arterial walls, thickened intimal layers, altered endothelium, and overall compromised arterial function. It leads to reduced and turbulent luminal blood flow and, when the lesions become unstable, to embolic clinical complications such as MI and stroke (Björkegren and Lusis, 2022). Cancer is linked to heightened inflammation, which can significantly contribute to the development of atherosclerosis (Crusz and Balkwill, 2015). In breast and colorectal cancer, patients show a high burden of atherosclerosis and related CVDs at the time of cancer diagnosis (Melson et al., 2024; Wang et al., 2018). Interestingly, the prevalence of risk factors for atherosclerosis is high in patients with a history of breast cancer, and differential associations between these risk factors suggest potential differences in the pathogenesis of atherosclerosis between breast cancer patients and controls (Šrámek et al., 2013).

While cancer can contribute to atherosclerosis through various mechanisms, including those discussed in the previous section on thrombosis, the most commonly studied are the side effects of radiotherapy and anti-tumor drugs. Radiotherapy can induce vascular damage, which increases vascular permeability and triggers inflammation, leading to intimal proliferation, collagen deposition, and fibrosis, all of which promote the formation of atherosclerosis plaques (Morganti et al., 2002). Several chemotherapeutic agents have also been linked to an increased incidence of atherosclerosis (Jiang et al., 2024), most notably antimetabolites (Raposeiras Roubín and Cordero, 2019), antimicrotubule agents (Hassan et al., 2018), and tyrosine kinase inhibitors (Albini et al., 2010). Checkpoint blockade inhibitors have reignited interest in the development of immunotherapeutic drugs for cancer, but an increased incidence of atherosclerosis in treated patients has been reported and should be carefully studied (Chan et al., 2023; Drobni et al., 2020a; Poels et al., 2021). NLR is an independent predictor of atherosclerotic cardiovascular risk and is useful in monitoring ICI-induced atherosclerosis (Zhang et al., 2021), suggesting that neutrophils could be playing a role in this phenomenon, especially given that neutrophils and NETs are known to play prominent roles in atherosclerosis (Pérez-Olivares and Soehnlein, 2021; Warnatsch et al., 2002; Drechsler et al., 2010; Knight et al., 2014; Döring et al., 2014).

Hypercholesterolemia is a critical driver of atherosclerosis. Atherogenic lipoproteins interact with vascular wall cells and induce monocyte recruitment, leading to macrophage differentiation, lipid uptake, and necrotic core formation in the subintima layer (Fan and Watanabe, 2022). In early phases of atherosclerosis (Fig. 3), neutrophils drive vascular dysfunction by producing ROS and NETs and releasing proteases in the arterial luminal space (Soehnlein, 2012; Silvestre-Roig et al., 2020), promote the accumulation of low-density lipoprotein in the arteries (Higazi et al., 1997), and help recruit monocytes to the lesion area (Drechsler et al., 2010). Additionally, neutrophils release CCL2, which increases monocyte adhesion (Winter et al., 2018) and endothelial activation, stimulating neutrophils to produce NETs, leading to further monocyte recruitment (Gupta et al., 2010). Hypercholesterolemia also leads to the release of chemokines that drive neutrophil infiltration into the lesion (Drechsler et al., 2010). At intermediate stages, neutrophils degranulate and release ROS and proteases like myeloperoxidase (MPO) that oxidize lipoproteins, enhancing the formation of foam cells (Carr et al., 2000), lipid-laden macrophages, which are a hallmark of atherosclerotic lesions (Gallo et al., 2025). Neutrophils also promote macrophage polarization to a pro-inflammatory state, increasing their production of IL-6 and IL-1β, which in turn promote the differentiation of Th17 cells, that further increase neutrophil infiltration to the lesion (Warnatsch et al., 2002). At later stages, neutrophils destabilize the plaque, inducing endothelial denudation and plaque erosion (Quillard et al., 2015). Hypercholesterolemia also promotes NET formation (Warnatsch et al., 2002; Rada, 2017), and NETs cause plaque destabilization by inducing death or damage of smooth muscle cells or endothelial cells, resulting in superficial plaque erosion (Quillard et al., 2015) and plaque rupture (Mawhin et al., 2018; Silvestre-Roig et al., 2019). Besides their role in plaque destabilization, NET-associated histone H2a also mediates monocyte adhesion to endothelial cells and accelerates atherosclerosis (Schumski et al., 2021). Neutrophils also play an important role in clearing cell debris and recruiting other immune cells, including monocytes and lymphocytes, to the injury site, which is critical for scar formation (Soehnlein et al., 2009; Chalise et al., 2021). Finally, NET–platelet interaction and thrombus formation accelerate atherosclerosis progression by causing endothelial dysfunction in humans and mice (Megens et al., 2012). Therefore, the ways in which cancer affects neutrophil biology, including by promoting their NET-formation ability, likely affect atherosclerosis in cancer patients.

Concluding remarks: Neutrophils as drivers of cancer-related CVD

Cancer patients experience an increased risk of CVD, which is usually attributed to the effects of treatment and shared risk factors. We propose that neutrophils provide a mechanistic link between cancer and CVD (Fig. 4). As discussed above, neutrophils are drivers of CVD and are affected by cancer at multiple levels. A central mechanism through which neutrophils promote these effects appears to be NET formation, and these structures are commonly found in cancer patients, not only in the tumors but also systemically (Demers et al., 2012; Leal et al., 2017; Zhang et al., 2019). NETs, as discussed above, are highly pro-thrombotic structures, and thrombosis greatly affects CVD onset and outcome.

Additionally, central to the association between cancer and CVD is the capacity of tumors to alter hematopoiesis, leading to altered production of neutrophils, as well as to recruit them by releasing growth factors and inflammatory cytokines that can directly mobilize these cells out of the marrow to contribute to systemic inflammation and thrombosis. Cancer treatments, including targeted therapies and chemotherapy, can amplify these effects.

All this leads to the appearance of cancer-induced neutrophil subpopulations, as discussed above, whose potential involvement in systemic damage and CVD is still largely unknown. We have recently shown (Adrover et al., 2025) that cancer can elicit the appearance of vrPMNs with increased NET formation ability, increased ability to interact with platelets, and decreased extravasation capacity. We believe that these neutrophils, which are highly reactive inside the vasculature, are in an ideal position to link cancer and CVD. In addition, this could help explain why treatment-naïve cancer patients also show increased CVD burden. Unfortunately, the field has paid little attention so far to vascular events and the intravascular role of cancer-associated neutrophils. We believe that further research should be devoted to understanding the systemic effects of cancer at the systemic vascular level and the roles of cancer-elicited neutrophil subtypes in CVD. This research has the potential to open new therapeutic avenues to relieve the CVD burden that cancer patients and survivors currently endure.

This work was supported by funding provided to J.M. Adrover by the British Heart Foundation (SP/F/24/150081) and by the Francis Crick Institute, which receives its core funding from Cancer Research UK (FC001003), the UK Medical Research Council (FC001003), and the Wellcome Trust (FC001003).

Author contributions: S. Ambreen: visualization and writing—original draft, review, and editing. A. Mccarthy: writing—original draft. A. Hidalgo: writing—review and editing. J.M. Adrover: conceptualization, funding acquisition, supervision, visualization, and writing—original draft, review, and editing.

Abi Abdallah
,
D.S.
,
C.E.
Egan
,
B.A.
Butcher
, and
E.Y.
Denkers
.
2011
.
Mouse neutrophils are professional antigen-presenting cells programmed to instruct Th1 and Th17 T-cell differentiation
.
Int. Immunol.
23
:
317
326
.
Adrover
,
J.M.
,
C.
del Fresno
,
G.
Crainiciuc
,
M.I.
Cuartero
,
M.
Casanova-Acebes
,
L.A.
Weiss
,
H.
Huerga-Encabo
,
C.
Silvestre-Roig
,
J.
Rossaint
,
I.
Cossío
, et al
.
2019
.
A neutrophil timer coordinates immune defense and vascular protection
.
Immunity
.
50
:
390
402.e10
.
Adrover
,
J.M.
,
A.
Aroca-Crevillén
,
G.
Crainiciuc
,
F.
Ostos
,
Y.
Rojas-Vega
,
A.
Rubio-Ponce
,
C.
Cilloniz
,
E.
Bonzón-Kulichenko
,
E.
Calvo
,
D.
Rico
, et al
.
2020
.
Programmed “disarming” of the neutrophil proteome reduces the magnitude of inflammation
.
Nat. Immunol.
21
:
135
144
.
Adrover
,
J.M.
,
S.A.C.
McDowell
,
X.-Y.
He
,
D.F.
Quail
, and
M.
Egeblad
.
2023
.
NETworking with cancer: The bidirectional interplay between cancer and neutrophil extracellular traps
.
Cancer Cell
.
41
:
505
526
.
Adrover
,
J.M.
,
X.
Han
,
L.
Sun
,
T.
Fujii
,
N.
Sivetz
,
J.
Daßler-Plenker
,
C.
Evans
,
J.
Peters
,
X.-Y.
He
,
C.D.
Cannon
, et al
.
2025
.
Neutrophils drive vascular occlusion, tumour necrosis and metastasis
.
Nature
.
Aggen
,
D.H.
,
C.R.
Ager
,
A.Z.
Obradovic
,
N.
Chowdhury
,
A.
Ghasemzadeh
,
W.
Mao
,
M.G.
Chaimowitz
,
Z.A.
Lopez-Bujanda
,
C.S.
Spina
,
J.E.
Hawley
, et al
.
2021
.
Blocking IL1 beta promotes tumor regression and remodeling of the myeloid compartment in a renal cell carcinoma model: Multidimensional analyses
.
Clin. Cancer Res.
27
:
608
621
.
Agrawal
,
M.
,
A.
Niroula
,
P.
Cunin
,
M.
McConkey
,
V.
Shkolnik
,
P.G.
Kim
,
W.J.
Wong
,
L.D.
Weeks
,
A.E.
Lin
,
P.G.
Miller
, et al
.
2022
.
TET2-mutant clonal hematopoiesis and risk of gout
.
Blood
.
140
:
1094
1103
.
Akinci Ozyurek
,
B.
,
T.
Sahin Ozdemirel
,
S.
Buyukyaylaci Ozden
,
Y.
Erdogan
,
B.
Kaplan
, and
T.
Kaplan
.
2017
.
Prognostic value of the neutrophil to lymphocyte ratio (NLR) in lung cancer cases
.
Asian Pac. J. Cancer Prev.
18
:
1417
1421
.
Al Sayed
,
M.F.
,
M.A.
Amrein
,
E.D.
Bührer
,
A.-L.
Huguenin
,
R.
Radpour
,
C.
Riether
, and
A.F.
Ochsenbein
.
2019
.
T-cell–Secreted TNFα induces emergency myelopoiesis and myeloid-derived suppressor cell differentiation in cancer
.
Cancer Res.
79
:
346
359
.
Albini
,
A.
,
G.
Pennesi
,
F.
Donatelli
,
R.
Cammarota
,
S.
De Flora
, and
D.M.
Noonan
.
2010
.
Cardiotoxicity of anticancer drugs: The need for cardio-oncology and cardio-oncological prevention
.
J. Natl. Cancer Inst.
102
:
14
25
.
Albrengues
,
J.
,
M.A.
Shields
,
D.
Ng
,
C.G.
Park
,
A.
Ambrico
,
M.E.
Poindexter
,
P.
Upadhyay
,
D.L.
Uyeminami
,
A.
Pommier
,
V.
Küttner
, et al
.
2018
.
Neutrophil extracellular traps produced during inflammation awaken dormant cancer cells in mice
.
Science
.
361
:eaao4227.
Allen
,
B.M.
,
K.J.
Hiam
,
C.E.
Burnett
,
A.
Venida
,
R.
DeBarge
,
I.
Tenvooren
,
D.M.
Marquez
,
N.W.
Cho
,
Y.
Carmi
, and
M.H.
Spitzer
.
2020
.
Systemic dysfunction and plasticity of the immune macroenvironment in cancer models
.
Nat. Med.
26
:
1125
1134
.
Allouchery
,
M.
,
C.
Beuvon
,
M.-C.
Pérault-Pochat
,
P.
Roblot
,
M.
Puyade
, and
M.
Martin
.
2022
.
Immune checkpoint inhibitors and venous thromboembolism: An analysis of the WHO pharmacovigilance database
.
Clin. Pharmacol. Ther.
112
:
164
170
.
Almand
,
B.
,
J.I.
Clark
,
E.
Nikitina
,
J.
Van Beynen
,
N.R.
English
,
S.C.
Knight
,
D.P.
Carbone
, and
D.I.
Gabrilovich
.
2001
.
Increased production of immature myeloid cells in cancer patients: A mechanism of immunosuppression in cancer
.
J. Immunol.
166
:
678
689
.
An
,
Z.
,
J.
Li
,
J.
Yu
,
X.
Wang
,
H.
Gao
,
W.
Zhang
,
Z.
Wei
,
J.
Zhang
,
Y.
Zhang
,
J.
Zhao
, and
X.
Liang
.
2019
.
Neutrophil extracellular traps induced by IL-8 aggravate atherosclerosis via activation NF-κB signaling in macrophages
.
Cell Cycle
.
18
:
2928
2938
.
Antoine
,
M.
,
A.
Flahault
,
C.
Philippe
,
B.
Crestani
,
J.-F.
Bernaudin
,
B.
Milleron
, and
J.
Cadranelll
.
1998
.
Neutrophil Alveolitis in Bronchioloalveolar Carcinoma: Induction by tumor-derived interleukin-8 and relation to clinical outcome
.
Am. J. Pathol.
152
:
83
92
.
Antonio
,
N.
,
M.L.
Bønnelykke‐Behrndtz
,
L.C.
Ward
,
J.
Collin
,
I.J.
Christensen
,
T.
Steiniche
,
H.
Schmidt
,
Y.
Feng
, and
P.
Martin
.
2015
.
The wound inflammatory response exacerbates growth of pre‐neoplastic cells and progression to cancer
.
EMBO J.
34
:
2219
2236
.
Ardi
,
V.C.
,
T.A.
Kupriyanova
,
E.I.
Deryugina
, and
J.P.
Quigley
.
2007
.
Human neutrophils uniquely release TIMP-free MMP-9 to provide a potent catalytic stimulator of angiogenesis
.
Proc. Natl. Acad. Sci. USA
.
104
:
20262
20267
.
Aroca-Crevillén
,
A.
,
J.M.
Adrover
, and
A.
Hidalgo
.
2020
.
Circadian features of neutrophil biology
.
Front. Immunol.
11
:
1
9
.
Ay
,
C.
,
R.
Simanek
,
R.
Vormittag
,
D.
Dunkler
,
G.
Alguel
,
S.
Koder
,
G.
Kornek
,
C.
Marosi
,
O.
Wagner
,
C.
Zielinski
, and
I.
Pabinger
.
2008
.
High plasma levels of soluble P-selectin are predictive of venous thromboembolism in cancer patients: Results from the Vienna cancer and thrombosis study (CATS)
.
Blood
.
112
:
2703
2708
.
Baghban
,
R.
,
L.
Roshangar
,
R.
Jahanban-Esfahlan
,
K.
Seidi
,
A.
Ebrahimi-Kalan
,
M.
Jaymand
,
S.
Kolahian
,
T.
Javaheri
, and
P.
Zare
.
2020
.
Tumor microenvironment complexity and therapeutic implications at a glance
.
Cell Commun. Signal.
18
:
59
.
Bald
,
T.
,
T.
Quast
,
J.
Landsberg
,
M.
Rogava
,
N.
Glodde
,
D.
Lopez-Ramos
,
J.
Kohlmeyer
,
S.
Riesenberg
,
D.
Van Den Boorn-Konijnenberg
,
C.
Hömig-Hölzel
, et al
.
2014
.
Ultraviolet-radiation-induced inflammation promotes angiotropism and metastasis in melanoma
.
Nature
.
507
:
109
113
.
Ballesteros
,
I.
,
A.
Rubio-Ponce
,
M.
Genua
,
E.
Lusito
,
I.
Kwok
,
G.
Fernández-Calvo
,
T.E.
Khoyratty
,
E.
van Grinsven
,
S.
González-Hernández
,
J.Á.
Nicolás-Ávila
, et al
.
2020
.
Co-Option of neutrophil fates by tissue environments
.
Cell
.
183
:
1282
1297.e18
.
Balomenakis
,
C.
,
A.S.
Papazoglou
,
D.
Vlachopoulou
,
A.
Kartas
,
D.V.
Moysidis
,
I.
Vouloagkas
,
C.
Tsagkaris
,
K.
Georgopoulos
,
A.
Samaras
,
E.
Karagiannidis
, and
G.
Giannakoulas
.
2023
.
Risk of arterial thromboembolism, bleeding and mortality in atrial fibrillation patients with comorbid cancer: A systematic review and meta-analysis
.
Hellenic J. Cardiol.
74
:
65
73
.
Beauvillain
,
C.
,
Y.
Delneste
,
M.
Scotet
,
A.
Peres
,
H.
Gascan
,
P.
Guermonprez
,
V.
Barnaba
, and
P.
Jeannin
.
2007
.
Neutrophils efficiently cross-prime naive T cells in vivo
.
Blood
.
110
:
2965
2973
.
Bella
,
S.D.
,
M.
Gennaro
,
M.
Vaccari
,
C.
Ferraris
,
S.
Nicola
,
A.
Riva
,
M.
Clerici
,
M.
Greco
, and
M.L.
Villa
.
2003
.
Altered maturation of peripheral blood dendritic cells in patients with breast cancer
.
Br. J. Cancer
.
89
:
1463
1472
.
Berg
,
D.D.
,
M.
Vaduganathan
,
A.
Nohria
,
M.S.
Davids
,
E.P.
Alyea
,
M.
Torre
, and
R.F.
Padera
.
2017
.
Immune-related fulminant myocarditis in a patient receiving ipilimumab therapy for relapsed chronic myelomonocytic leukaemia
.
Eur. J. Heart Fail.
19
:
682
685
.
Björkegren
,
J.L.M.
, and
A.J.
Lusis
.
2022
.
Atherosclerosis: Recent developments
.
Cell
.
185
:
1630
1645
.
Blaisdell
,
A.
,
A.
Crequer
,
D.
Columbus
,
T.
Daikoku
,
K.
Mittal
,
S.K.
Dey
, and
A.
Erlebacher
.
2015
.
Neutrophils oppose uterine epithelial carcinogenesis via debridement of hypoxic tumor cells
.
Cancer Cell
.
28
:
785
799
.
Bogiatzi
,
C.
,
D.G.
Hackam
,
A.I.
McLeod
, and
J.D.
Spence
.
2014
.
Secular trends in ischemic stroke subtypes and stroke risk factors
.
Stroke
.
45
:
3208
3213
.
Boire
,
A.
,
K.
Burke
,
T.R.
Cox
,
T.
Guise
,
M.
Jamal-Hanjani
,
T.
Janowitz
,
R.
Kaplan
,
R.
Lee
,
C.
Swanton
,
M.G.
Vander Heiden
, and
E.
Sahai
.
2024
.
Why do patients with cancer die?
Nat. Rev. Cancer
.
24
:
578
589
.
Bolton
,
K.L.
,
R.N.
Ptashkin
,
T.
Gao
,
L.
Braunstein
,
S.M.
Devlin
,
D.
Kelly
,
M.
Patel
,
A.
Berthon
,
A.
Syed
,
M.
Yabe
, et al
.
2020
.
Cancer therapy shapes the fitness landscape of clonal hematopoiesis
.
Nat. Genet.
52
:
1219
1226
.
Bonaventura
,
A.
,
A.
Vecchié
,
A.
Abbate
, and
F.
Montecucco
.
2020
.
Neutrophil extracellular traps and cardiovascular diseases: An update
.
Cells
.
9
:
231
.
Borregaard
,
N.
.
2010
.
Neutrophils, from marrow to microbes
.
Immunity
.
33
:
657
670
.
Borregaard
,
N.
,
O.E.
Sørensen
, and
K.
Theilgaard-Mönch
.
2007
.
Neutrophil granules: A library of innate immunity proteins
.
Trends Immunol.
28
:
340
345
.
Bradshaw
,
P.T.
,
J.
Stevens
,
N.
Khankari
,
S.L.
Teitelbaum
,
A.I.
Neugut
, and
M.D.
Gammon
.
2016
.
Cardiovascular disease mortality among breast cancer survivors
.
Epidemiology
.
27
:
6
13
.
Branzk
,
N.
,
A.
Lubojemska
,
S.E.
Hardison
,
Q.
Wang
,
M.G.
Gutierrez
,
G.D.
Brown
, and
V.
Papayannopoulos
.
2014
.
Neutrophils sense microbe size and selectively release neutrophil extracellular traps in response to large pathogens
.
Nat. Immunol.
15
:
1017
1025
.
Brinkmann
,
V.
,
U.
Reichard
,
C.
Goosmann
,
B.
Fauler
,
Y.
Uhlemann
,
D.S.
Weiss
,
Y.
Weinrauch
, and
A.
Zychlinsky
.
2004
.
Neutrophil extracellular traps kill bacteria
.
Science
.
303
:
1532
1535
.
Butin-Israeli
,
V.
,
T.M.
Bui
,
H.L.
Wiesolek
,
L.
Mascarenhas
,
J.J.
Lee
,
L.C.
Mehl
,
K.R.
Knutson
,
S.A.
Adam
,
R.D.
Goldman
,
A.
Beyder
, et al
.
2019
.
Neutrophil-induced genomic instability impedes resolution of inflammation and wound healing
.
J. Clin. Invest.
129
:
712
726
.
Cabeza-Cabrerizo
,
M.
,
A.
Cardoso
,
C.M.
Minutti
,
M.
Pereira Da Costa
, and
C.
Reis e Sousa
.
2021
.
Dendritic cells revisited
.
Annu. Rev. Immunol.
39
:
131
166
.
Canli
,
Ö.
,
A.M.
Nicolas
,
J.
Gupta
,
F.
Finkelmeier
,
O.
Goncharova
,
M.
Pesic
,
T.
Neumann
,
D.
Horst
,
M.
Löwer
,
U.
Sahin
, and
F.R.
Greten
.
2017
.
Myeloid cell-derived reactive oxygen species induce epithelial mutagenesis
.
Cancer Cell
.
32
:
869
883.e5
.
Carbone
,
F.
,
A.
Bonaventura
, and
F.
Montecucco
.
2019
.
Neutrophil-related oxidants drive heart and brain remodeling after ischemia/reperfusion injury
.
Front. Physiol.
10
:
1587
.
Carmona-Rivera
,
C.
,
W.
Zhao
,
S.
Yalavarthi
, and
M.J.
Kaplan
.
2015
.
Neutrophil extracellular traps induce endothelial dysfunction in systemic lupus erythematosus through the activation of matrix metalloproteinase-2
.
Ann. Rheum. Dis.
74
:
1417
1424
.
Carr
,
A.C.
,
M.R.
McCall
, and
B.
Frei
.
2000
.
Oxidation of LDL by myeloperoxidase and reactive nitrogen species: Reaction pathways and antioxidant protection
.
ATVB
.
20
:
1716
1723
.
Casanova-Acebes
,
M.
,
J.A.
Nicolás-Ávila
,
J.L.
Li
,
S.
García-Silva
,
A.
Balachander
,
A.
Rubio-Ponce
,
L.A.
Weiss
,
J.M.
Adrover
,
K.
Burrows
,
N.
A-González
, et al
.
2018
.
Neutrophils instruct homeostatic and pathological states in naive tissues
.
J. Exp. Med.
215
:
2778
2795
.
Casbon
,
A.-J.
,
D.
Reynaud
,
C.
Park
,
E.
Khuc
,
D.D.
Gan
,
K.
Schepers
,
E.
Passegué
, and
Z.
Werb
.
2015
.
Invasive breast cancer reprograms early myeloid differentiation in the bone marrow to generate immunosuppressive neutrophils
.
Proc. Natl. Acad. Sci. USA
.
112
:
E566
E575
.
Cassidy
,
M.R.
,
R.E.
Wolchok
,
J.
Zheng
,
K.S.
Panageas
,
J.D.
Wolchok
,
D.
Coit
,
M.A.
Postow
, and
C.
Ariyan
.
2017
.
Neutrophil to lymphocyte ratio is associated with outcome during ipilimumab treatment
.
EBioMedicine
.
18
:
56
61
.
Chalise
,
U.
,
M.
Becirovic-Agic
, and
M.L.
Lindsey
.
2021
.
Neutrophil crosstalk during cardiac wound healing after myocardial infarction
.
Curr. Opin. Physiol.
24
:
100485
.
Chan
,
A.
,
S.
Torelli
,
E.
Cheng
,
R.
Batchelder
,
S.
Waliany
,
J.
Neal
,
R.
Witteles
,
P.
Nguyen
,
P.
Cheng
, and
H.
Zhu
.
2023
.
Immunotherapy-associated atherosclerosis: A comprehensive review of recent findings and implications for future research
.
Curr. Treat Options Cardio Med.
25
:
715
735
.
Chavakis
,
T.
,
I.
Mitroulis
, and
G.
Hajishengallis
.
2019
.
Hematopoietic progenitor cells as integrative hubs for adaptation to and fine-tuning of inflammation
.
Nat. Immunol.
20
:
802
811
.
Chen
,
P.-C.
,
C.-H.
Muo
,
Y.-T.
Lee
,
Y.-H.
Yu
, and
F.-C.
Sung
.
2011
.
Lung cancer and incidence of stroke: A population-based cohort study
.
Stroke
.
42
:
3034
3039
.
Cheng
,
H.
, and
T.
Force
.
2010
.
Molecular mechanisms of cardiovascular toxicity of targeted cancer therapeutics
.
Circ. Res.
106
:
21
34
.
Christopher
,
M.J.
,
F.
Liu
,
M.J.
Hilton
,
F.
Long
, and
D.C.
Link
.
2009
.
Suppression of CXCL12 production by bone marrow osteoblasts is a common and critical pathway for cytokine-induced mobilization
.
Blood
.
114
:
1331
1339
.
Chung
,
R.
,
A.K.
Ghosh
, and
A.
Banerjee
.
2018
.
Cardiotoxicity: Precision medicine with imprecise definitions
.
Open Heart
.
5
:e000774.
Cocho
,
D.
,
J.
Gendre
,
A.
Boltes
,
J.
Espinosa
,
A.C.
Ricciardi
,
J.
Pons
,
M.
Jimenez
, and
P.
Otermin
.
2015
.
Predictors of occult cancer in acute ischemic stroke patients
.
J. Stroke Cerebrovasc. Dis.
24
:
1324
1328
.
Coffelt
,
S.B.
,
K.
Kersten
,
C.W.
Doornebal
,
J.
Weiden
,
K.
Vrijland
,
C.-S.
Hau
,
N.J.M.
Verstegen
,
M.
Ciampricotti
,
L.J.A.C.
Hawinkels
,
J.
Jonkers
, and
K.E.
De Visser
.
2015
.
IL-17-producing γδ T cells and neutrophils conspire to promote breast cancer metastasis
.
Nature
.
522
:
345
348
.
Connolly
,
G.C.
, and
A.A.
Khorana
.
2010
.
Emerging risk stratification approaches to cancer-associated thrombosis: Risk factors, biomarkers and a risk score
.
Thromb. Res.
125
:
S1
S7
.
Cools-Lartigue
,
J.
,
J.
Spicer
,
B.
McDonald
,
S.
Gowing
,
S.
Chow
,
B.
Giannias
,
F.
Bourdeau
,
P.
Kubes
, and
L.
Ferri
.
2013
.
Neutrophil extracellular traps sequester circulating tumor cells and promote metastasis
.
J. Clin. Invest.
123
:
3446
3458
.
Coombs
,
C.C.
,
A.
Zehir
,
S.M.
Devlin
,
A.
Kishtagari
,
A.
Syed
,
P.
Jonsson
,
D.M.
Hyman
,
D.B.
Solit
,
M.E.
Robson
,
J.
Baselga
, et al
.
2017
.
Therapy-related clonal hematopoiesis in patients with non-hematologic cancers is common and associated with adverse clinical outcomes
.
Cell Stem Cell
.
21
:
374
382.e4
.
Coussens
,
L.M.
, and
Z.
Werb
.
2002
.
Inflammation and cancer
.
Nature
.
420
:
860
867
.
Cramer
,
L.
,
B.
Hildebrandt
,
T.
Kung
,
K.
Wichmann
,
J.
Springer
,
W.
Doehner
,
A.
Sandek
,
M.
Valentova
,
T.
Stojakovic
,
H.
Scharnagl
, et al
.
2014
.
Cardiovascular function and predictors of exercise capacity in patients with colorectal cancer
.
J. Am. Coll. Cardiol.
64
:
1310
1319
.
Crusz
,
S.M.
, and
F.R.
Balkwill
.
2015
.
Inflammation and cancer: Advances and new agents
.
Nat. Rev. Clin. Oncol.
12
:
584
596
.
Cubbon
,
R.M.
, and
A.R.
Lyon
.
2016
.
Cardio-oncology: Concepts and practice
.
Indian Heart J.
68
:
S77
S85
.
Dancey
,
J.T.
,
K.A.
Deubelbeiss
,
L.A.
Harker
, and
C.A.
Finch
.
1976
.
Neutrophil kinetics in man
.
J. Clin. Invest.
58
:
705
715
.
Darbousset
,
R.
,
G.M.
Thomas
,
S.
Mezouar
,
C.
Frère
,
R.
Bonier
,
N.
Mackman
,
T.
Renné
,
F.
Dignat-george
, and
C.
Dubois
.
2012
.
Tissue factor-positive neutrophils bind to injured endothelial wall and initiate thrombus formation
.
Blood
.
120
:
2133
2143
.
Daseke
,
M.J.
,
F.M.
Valerio
,
W.J.
Kalusche
,
Y.
Ma
,
K.Y.
DeLeon-Pennell
, and
M.L.
Lindsey
.
2019
.
Neutrophil proteome shifts over the myocardial infarction time continuum
.
Basic Res. Cardiol.
114
:
37
.
Daseke
,
M.J.
,
U.
Chalise
,
M.
Becirovic-Agic
,
J.D.
Salomon
,
L.M.
Cook
,
A.J.
Case
, and
M.L.
Lindsey
.
2021
.
Neutrophil signaling during myocardial infarction wound repair
.
Cell. Signal.
77
:
109816
.
De Keulenaer
,
G.W.
,
K.
Doggen
, and
K.
Lemmens
.
2010
.
The vulnerability of the heart as a pluricellular paracrine organ: Lessons from unexpected triggers of heart failure in targeted ErbB2 anticancer therapy
.
Circ. Res.
106
:
35
46
.
De Visser
,
K.E.
, and
J.A.
Joyce
.
2023
.
The evolving tumor microenvironment: From cancer initiation to metastatic outgrowth
.
Cancer Cell
.
41
:
374
403
.
Demers
,
M.
,
D.S.
Krause
,
D.
Schatzberg
,
K.
Martinod
,
J.R.
Voorhees
,
T.A.
Fuchs
,
D.T.
Scadden
, and
D.D.
Wagner
.
2012
.
Cancers predispose neutrophils to release extracellular DNA traps that contribute to cancer-associated thrombosis
.
Proc. Natl. Acad. Sci. USA
.
109
:
13076
13081
.
Deryugina
,
E.I.
,
E.
Zajac
,
A.
Juncker-Jensen
,
T.A.
Kupriyanova
,
L.
Welter
, and
J.P.
Quigley
.
2014
.
Tissue-Infiltrating neutrophils constitute the major in vivo source of angiogenesis-inducing MMP-9 in the tumor microenvironment
.
Neoplasia
.
16
:
771
788
.
Desai
,
P.
,
N.
Mencia-Trinchant
,
O.
Savenkov
,
M.S.
Simon
,
G.
Cheang
,
S.
Lee
,
M.
Samuel
,
E.K.
Ritchie
,
M.L.
Guzman
,
K.V.
Ballman
, et al
.
2018
.
Somatic mutations precede acute myeloid leukemia years before diagnosis
.
Nat. Med.
24
:
1015
1023
.
Dhanesha
,
N.
,
J.
Ansari
,
N.
Pandey
,
H.
Kaur
,
C.
Virk
, and
K.Y.
Stokes
.
2023
.
Poststroke venous thromboembolism and neutrophil activation: An illustrated review
.
Res. Pract. Thromb. Haemost.
7
:
100170
.
Di Mitri
,
D.
,
A.
Toso
,
J.J.
Chen
,
M.
Sarti
,
S.
Pinton
,
T.R.
Jost
,
R.
D’Antuono
,
E.
Montani
,
R.
Garcia-Escudero
,
I.
Guccini
, et al
.
2014
.
Tumour-infiltrating Gr-1+ myeloid cells antagonize senescence in cancer
.
Nature
.
515
:
134
137
.
Dominguez
,
C.
,
K.K.
McCampbell
,
J.M.
David
, and
C.
Palena
.
2017
.
Neutralization of IL-8 decreases tumor PMN-MDSCs and reduces mesenchymalization of claudin-low triple-negative breast cancer
.
JCI Insight
.
2
:e94296.
Döring
,
Y.
,
O.
Soehnlein
, and
C.
Weber
.
2014
.
Neutrophils cast NETs in atherosclerosis: Employing peptidylarginine deiminase as a therapeutic target
.
Circ. Res.
114
:
931
934
.
Dorsheimer
,
L.
,
B.
Assmus
,
T.
Rasper
,
C.A.
Ortmann
,
A.
Ecke
,
K.
Abou-El-Ardat
,
T.
Schmid
,
B.
Brüne
,
S.
Wagner
,
H.
Serve
, et al
.
2019
.
Association of mutations contributing to clonal hematopoiesis with prognosis in chronic ischemic heart failure
.
JAMA Cardiol.
4
:
25
33
.
Drechsler
,
M.
,
R.T.A.
Megens
,
M.
van Zandvoort
,
C.
Weber
, and
O.
Soehnlein
.
2010
.
Hyperlipidemia-triggered neutrophilia promotes early atherosclerosis
.
Circulation
.
122
:
1837
1845
.
Drobni
,
Z.D.
,
R.M.
Alvi
,
J.
Taron
,
A.
Zafar
,
S.P.
Murphy
,
P.K.
Rambarat
,
R.C.
Mosarla
,
C.
Lee
,
D.A.
Zlotoff
,
V.K.
Raghu
, et al
.
2020a
.
Association between immune checkpoint inhibitors with cardiovascular events and atherosclerotic plaque
.
Circulation
.
142
:
2299
2311
.
Drobni
,
Z.D.
,
A.
Zafar
,
L.
Zubiri
,
D.A.
Zlotoff
,
R.M.
Alvi
,
C.
Lee
,
S.
Hartmann
,
H.K.
Gilman
,
A.C.
Villani
,
A.
Nohria
, et al
.
2020b
.
Decreased absolute lymphocyte count and increased neutrophil/lymphocyte ratio with immune checkpoint inhibitor-associated myocarditis
.
JAHA
.
9
:e018306.
D’Abbondanza
,
M.
,
E.E.
Martorelli
,
M.A.
Ricci
,
S.
De Vuono
,
E.N.
Migliola
,
C.
Godino
,
S.
Corradetti
,
D.
Siepi
,
M.T.
Paganelli
,
N.
Maugeri
, and
G.
Lupattelli
.
2019
.
Increased plasmatic NETs by-products in patients in severe obesity
.
Sci. Rep.
9
:
14678
.
Eash
,
K.J.
,
A.M.
Greenbaum
,
P.K.
Gopalan
, and
D.C.
Link
.
2010
.
CXCR2 and CXCR4 antagonistically regulate neutrophil trafficking from murine bone marrow
.
J. Clin. Invest.
120
:
2423
2431
.
Economopoulou
,
P.
,
A.
Kotsakis
,
I.
Kapiris
, and
N.
Kentepozidis
.
2015
.
Cancer therapy and cardiovascular risk: Focus on bevacizumab
.
CMAR
.
7
:
133
143
.
Egeblad
,
M.
, and
Z.
Werb
.
2002
.
New functions for the matrix metalloproteinases in cancer progression
.
Nat. Rev. Cancer
.
2
:
161
174
.
El Kazzi
,
M.
,
B.S.
Rayner
,
B.
Chami
,
J.M.
Dennis
,
S.R.
Thomas
, and
P.K.
Witting
.
2020
.
Neutrophil-mediated cardiac damage after acute myocardial infarction: Significance of defining a new target cell type for developing cardioprotective drugs
.
Antioxid. Redox Signal.
33
:
689
712
.
Engblom
,
C.
,
C.
Pfirschke
,
R.
Zilionis
,
J.
Da Silva Martins
,
S.A.
Bos
,
G.
Courties
,
S.
Rickelt
,
N.
Severe
,
N.
Baryawno
,
J.
Faget
, et al
.
2017
.
Osteoblasts remotely supply lung tumors with cancer-promoting SiglecFhigh neutrophils
.
Science
.
358
:eaal5081.
Eruslanov
,
E.B.
,
P.S.
Bhojnagarwala
,
J.G.
Quatromoni
,
T.L.
Stephen
,
A.
Ranganathan
,
C.
Deshpande
,
T.
Akimova
,
A.
Vachani
,
L.
Litzky
,
W.W.
Hancock
, et al
.
2014
.
Tumor-associated neutrophils stimulate T cell responses in early-stage human lung cancer
.
J. Clin. Invest.
124
:
5466
5480
.
Evrard
,
M.
,
I.W.H.
Kwok
,
S.Z.
Chong
,
K.W.W.
Teng
,
E.
Becht
,
J.
Chen
,
J.L.
Sieow
,
H.L.
Penny
,
G.C.
Ching
,
S.
Devi
, et al
.
2018
.
Developmental analysis of bone marrow neutrophils reveals populations specialized in expansion, trafficking, and effector functions
.
Immunity
.
48
:
364
379.e8
.
Fairchild
,
L.
,
J.
Whalen
,
K.
D’Aco
,
J.
Wu
,
C.B.
Gustafson
,
N.
Solovieff
,
F.
Su
,
R.J.
Leary
,
C.D.
Campbell
, and
O.A.
Balbin
.
2023
.
Clonal hematopoiesis detection in patients with cancer using cell-free DNA sequencing
.
Sci. Transl. Med.
15
:eabm8729.
Fan
,
J.
, and
T.
Watanabe
.
2022
.
Atherosclerosis: Known and unknown
.
Pathol. Int.
72
:
151
160
.
Fernandes
,
C.J.
,
L.T.K.
Morinaga
,
J.L.
Alves
,
M.A.
Castro
,
D.
Calderaro
,
C.V.P.
Jardim
, and
R.
Souza
.
2019
.
Cancer-associated thrombosis: The when, how and why
.
Eur. Respir. Rev.
28
:
180119
.
Finisguerra
,
V.
,
G.
Di Conza
,
M.
Di Matteo
,
J.
Serneels
,
S.
Costa
,
A.A.R.
Thompson
,
E.
Wauters
,
S.
Walmsley
,
H.
Prenen
,
Z.
Granot
, et al
.
2015
.
MET is required for the recruitment of anti-tumoural neutrophils
.
Nature
.
522
:
349
353
.
Florido
,
R.
,
N.R.
Daya
,
C.E.
Ndumele
,
S.
Koton
,
S.D.
Russell
,
A.
Prizment
,
R.S.
Blumenthal
,
K.
Matsushita
,
Y.
Mok
,
A.S.
Felix
, et al
.
2022
.
Cardiovascular disease risk among cancer survivors: The atherosclerosis risk in communities (ARIC) study
.
J. Am. Coll. Cardiol.
80
:
22
32
.
Forlow
,
S.B.
,
J.R.
Schurr
,
J.K.
Kolls
,
G.J.
Bagby
,
P.O.
Schwarzenberger
, and
K.
Ley
.
2001
.
Increased granulopoiesis through interleukin-17 and granulocyte colony-stimulating factor in leukocyte adhesion molecule–deficient mice
.
Blood
.
98
:
3309
3314
.
Fridlender
,
Z.G.
,
J.
Sun
,
S.
Kim
,
V.
Kapoor
,
G.
Cheng
,
L.
Ling
,
G.S.
Worthen
, and
S.M.
Albelda
.
2009
.
Polarization of tumor-associated neutrophil phenotype by TGF-beta: “N1” versus “N2” TAN
.
Cancer Cell
.
16
:
183
194
.
Fuchs
,
T.A.
,
A.
Brill
,
D.
Duerschmied
,
D.
Schatzberg
,
M.
Monestier
,
D.D.
Myers
,
S.K.
Wrobleski
,
T.W.
Wakefield
,
J.H.
Hartwig
, and
D.D.
Wagner
.
2010
.
Extracellular DNA traps promote thrombosis
.
Proc. Natl. Acad. Sci. USA
.
107
:
15880
15885
.
Fuchs
,
T.A.
,
A.
Brill
, and
D.D.
Wagner
.
2012
.
Neutrophil extracellular trap (NET) impact on deep vein thrombosis
.
ATVB
.
32
:
1777
1783
.
Fuster
,
J.J.
,
S.
MacLauchlan
,
M.A.
Zuriaga
,
M.N.
Polackal
,
A.C.
Ostriker
,
R.
Chakraborty
,
C.-L.
Wu
,
S.
Sano
,
S.
Muralidharan
,
C.
Rius
, et al
.
2017
.
Clonal hematopoiesis associated with TET2 deficiency accelerates atherosclerosis development in mice
.
Science
.
355
:
842
847
.
Gallo
,
A.
,
W.
Le Goff
,
R.D.
Santos
,
I.
Fichtner
,
S.
Carugo
,
A.
Corsini
,
C.
Sirtori
, and
M.
Ruscica
.
2025
.
Hypercholesterolemia and inflammation—cooperative cardiovascular risk factors
.
Eur. J. Clin. Invest.
55
:e14326.
Ge
,
L.
,
X.
Zhou
,
W.-J.
Ji
,
R.-Y.
Lu
,
Y.
Zhang
,
Y.-D.
Zhang
,
Y.-Q.
Ma
,
J.-H.
Zhao
, and
Y.-M.
Li
.
2015
.
Neutrophil extracellular traps in ischemia-reperfusion injury-induced myocardial no-reflow: Therapeutic potential of DNase-based reperfusion strategy
.
Am. J. Physiol. Heart Circ. Physiol.
308
:
H500
H509
.
Genovese
,
G.
,
A.K.
Kähler
,
R.E.
Handsaker
,
J.
Lindberg
,
S.A.
Rose
,
S.F.
Bakhoum
,
K.
Chambert
,
E.
Mick
,
B.M.
Neale
,
M.
Fromer
, et al
.
2014
.
Clonal hematopoiesis and blood-cancer risk inferred from blood DNA sequence
.
N. Engl. J. Med.
371
:
2477
2487
.
Gentles
,
A.J.
,
A.M.
Newman
,
C.L.
Liu
,
S.V.
Bratman
,
W.
Feng
,
D.
Kim
,
V.S.
Nair
,
Y.
Xu
,
A.
Khuong
,
C.D.
Hoang
, et al
.
2015
.
The prognostic landscape of genes and infiltrating immune cells across human cancers
.
Nat. Med.
21
:
938
945
.
Gillis
,
N.K.
,
M.
Ball
,
Q.
Zhang
,
Z.
Ma
,
Y.
Zhao
,
S.J.
Yoder
,
M.E.
Balasis
,
T.E.
Mesa
,
D.A.
Sallman
,
J.E.
Lancet
, et al
.
2017
.
Clonal haemopoiesis and therapy-related myeloid malignancies in elderly patients: A proof-of-concept, case-control study
.
Lancet Oncol.
18
:
112
121
.
Gómez-Moreno
,
D.
,
J.M.
Adrover
, and
A.
Hidalgo
.
2018
.
Neutrophils as effectors of vascular inflammation
.
Eur. J. Clin. Invest.
48
:
1
14
.
Granot
,
Z.
,
E.
Henke
,
E.A.
Comen
,
T.A.
King
,
L.
Norton
, and
R.
Benezra
.
2011
.
Tumor entrained neutrophils inhibit seeding in the premetastatic lung
.
Cancer Cell
.
20
:
300
314
.
Gray
,
A.J.
,
J.E.
Bishop
,
J.T.
Reeves
, and
G.J.
Laurent
.
1993
.
Aα and Bβ chains of fibrinogen stimulate proliferation of human fibroblasts
.
J. Cell Sci.
104
:
409
413
.
Green
,
C.E.
,
J.
Chacon
,
B.M.
Godinich
,
R.
Hock
,
M.
Kiesewetter
,
M.
Raynor
,
K.
Marwaha
,
S.
Maharaj
, and
N.
Holland
.
2023
.
The heart of the matter: Immune checkpoint inhibitors and immune-related adverse events on the cardiovascular system
.
Cancers (Basel)
.
15
:
5707
.
Grilz
,
E.
,
F.
Posch
,
S.
Nopp
,
O.
Königsbrügge
,
I.M.
Lang
,
P.
Klimek
,
S.
Thurner
,
I.
Pabinger
, and
C.
Ay
.
2021
.
Relative risk of arterial and venous thromboembolism in persons with cancer vs. persons without cancer—a nationwide analysis
.
Eur. Heart J.
42
:
2299
2307
.
Guan
,
X.
,
Y.
Lu
,
H.
Zhu
,
S.
Yu
,
W.
Zhao
,
X.
Chi
,
C.
Xie
, and
Z.
Yin
.
2021
.
The crosstalk between cancer cells and neutrophils enhances hepatocellular carcinoma metastasis via neutrophil extracellular traps-associated cathepsin G component: A potential therapeutic target
.
J. Hepatocell. Carcinoma
.
8
:
451
465
.
Guo
,
W.
,
X.
Fan
,
B.R.
Lewis
,
M.P.
Johnson
,
C.S.
Rihal
,
A.
Lerman
, and
J.
Herrmann
.
2021
.
Cancer patients have a higher risk of thrombotic and ischemic events after percutaneous coronary intervention
.
JACC. Cardiovasc. Interv.
14
:
1094
1105
.
Gupta
,
A.K.
,
M.B.
Joshi
,
M.
Philippova
,
P.
Erne
,
P.
Hasler
,
S.
Hahn
, and
T.J.
Resink
.
2010
.
Activated endothelial cells induce neutrophil extracellular traps and are susceptible to NETosis‐mediated cell death
.
FEBS Lett.
584
:
3193
3197
.
Gutmann
,
C.
,
R.
Siow
,
A.M.
Gwozdz
,
P.
Saha
, and
A.
Smith
.
2020
.
Reactive oxygen species in venous thrombosis
.
IJMS
.
21
:
1918
.
Hajebi
,
R.
,
H.
Ahmadi Amoli
,
H.
Zabihi Mahmoudabadi
,
E.
Rahimpour
,
K.
Najjari
, and
E.
Nazar
.
2021
.
Association between preoperative leukocytosis and pathological features of colorectal cancers
.
Asian Pac. J. Cancer Biol.
6
:
43
47
.
Hampton
,
H.R.
,
J.
Bailey
,
M.
Tomura
,
R.
Brink
, and
T.
Chtanova
.
2015
.
Microbe-dependent lymphatic migration of neutrophils modulates lymphocyte proliferation in lymph nodes
.
Nat. Commun.
6
:
7139
.
Handy
,
C.E.
,
R.
Quispe
,
X.
Pinto
,
M.J.
Blaha
,
R.S.
Blumenthal
,
E.D.
Michos
,
J.A.C.
Lima
,
E.
Guallar
,
S.
Ryu
,
J.
Cho
, et al
.
2018
.
Synergistic opportunities in the interplay between cancer screening and cardiovascular disease risk assessment: Together we are stronger
.
Circulation
.
138
:
727
734
.
Hassan
,
S.A.
,
N.
Palaskas
,
P.
Kim
,
C.
Iliescu
,
J.
Lopez-Mattei
,
E.
Mouhayar
,
R.
Mougdil
,
K.
Thompson
,
J.
Banchs
, and
S.W.
Yusuf
.
2018
.
Chemotherapeutic agents and the risk of ischemia and arterial thrombosis
.
Curr. Atheroscler. Rep.
20
:
10
.
Haumer
,
M.
,
J.
Amighi
,
M.
Exner
,
W.
Mlekusch
,
S.
Sabeti
,
O.
Schlager
,
I.
Schwarzinger
,
O.
Wagner
,
E.
Minar
, and
M.
Schillinger
.
2005
.
Association of neutrophils and future cardiovascular events in patients with peripheral artery disease
.
J. Vasc. Surg.
41
:
610
617
.
He
,
G.
,
H.
Zhang
,
J.
Zhou
,
B.
Wang
,
Y.
Chen
,
Y.
Kong
,
X.
Xie
,
X.
Wang
,
R.
Fei
,
L.
Wei
, et al
.
2015
.
Peritumoural neutrophils negatively regulate adaptive immunity via the PD-L1/PD-1 signalling pathway in hepatocellular carcinoma
.
J. Exp. Clin. Cancer Res.
34
:
141
.
He
,
X.-Y.
,
Y.
Gao
,
D.
Ng
,
E.
Michalopoulou
,
S.
George
,
J.M.
Adrover
,
L.
Sun
,
J.
Albrengues
,
J.
Daßler-Plenker
,
X.
Han
, et al
.
2024
.
Chronic stress increases metastasis via neutrophil-mediated changes to the microenvironment
.
Cancer Cell
.
42
:
474
486.e12
.
Hedrick
,
C.C.
, and
I.
Malanchi
.
2022
.
Neutrophils in cancer: Heterogeneous and multifaceted
.
Nat. Rev. Immunol.
22
:
173
187
.
Heron
,
M.
2021
.
Deaths: Leading causes for 2019
.
Natl. Vital Stat. Rep.
70
:
1
114
.
Herrmann
,
J.
2020
.
Vascular toxic effects of cancer therapies
.
Nat. Rev. Cardiol.
17
:
503
522
.
Hiam-Galvez
,
K.J.
,
B.M.
Allen
, and
M.H.
Spitzer
.
2021
.
Systemic immunity in cancer
.
Nat. Rev. Cancer
.
21
:
345
359
.
Hidalgo
,
A.
,
J.
Chang
,
J.-E.
Jang
,
A.J.
Peired
,
E.Y.
Chiang
, and
P.S.
Frenette
.
2009
.
Heterotypic interactions enabled by polarized neutrophil microdomains mediate thromboinflammatory injury
.
Nat. Med.
15
:
384
391
.
Hidalgo
,
A.
,
E.R.
Chilvers
,
C.
Summers
, and
L.
Koenderman
.
2019
.
The neutrophil life cycle
.
Trends Immunol.
40
:
584
597
.
Hidalgo
,
A.
,
P.
Libby
,
O.
Soehnlein
,
I.V.
Aramburu
,
V.
Papayannopoulos
, and
C.
Silvestre-Roig
.
2022
.
Neutrophil extracellular traps: From physiology to pathology
.
Cardiovasc. Res.
118
:
2737
2753
.
Higaki
,
A.
,
H.
Okayama
,
Y.
Homma
,
T.
Sano
,
T.
Kitai
,
T.
Yonetsu
,
S.
Torii
,
S.
Kohsaka
,
S.
Kuroda
,
K.
Node
, et al
.
2022
.
Predictive value of neutrophil-to-lymphocyte ratio for the fatality of COVID-19 patients complicated with cardiovascular diseases and/or risk factors
.
Sci. Rep.
12
:
13606
.
Higazi
,
A.A.
,
E.
Lavi
,
K.
Bdeir
,
A.M.
Ulrich
,
D.G.
Jamieson
,
D.J.
Rader
,
D.C.
Usher
,
W.
Kane
,
T.
Ganz
, and
D.B.
Cines
.
1997
.
Defensin stimulates the binding of lipoprotein (a) to human vascular endothelial and smooth muscle cells
.
Blood
.
89
:
4290
4298
.
Hisada
,
Y.
, and
N.
Mackman
.
2017
.
Cancer-associated pathways and biomarkers of venous thrombosis
.
Blood
.
130
:
1499
1506
.
Houghton
,
A.M.
,
D.M.
Rzymkiewicz
,
H.
Ji
,
A.D.
Gregory
,
E.E.
Egea
,
H.E.
Metz
,
D.B.
Stolz
,
S.R.
Land
,
L.A.
Marconcini
,
C.R.
Kliment
, et al
.
2010
.
Neutrophil elastase–mediated degradation of IRS-1 accelerates lung tumor growth
.
Nat. Med.
16
:
219
223
.
Huerga Encabo
,
H.
,
I.V.
Aramburu
,
M.
Garcia-Albornoz
,
M.
Piganeau
,
H.
Wood
,
A.
Song
,
A.
Ferrelli
,
A.
Sharma
,
C.M.
Minutti
,
M.-C.
Domart
, et al
.
2023
.
Loss of TET2 in human hematopoietic stem cells alters the development and function of neutrophils
.
Cell Stem Cell
.
30
:
781
799.e9
.
Huo
,
Y.
,
Y.
Zhou
,
J.
Zheng
,
G.
Jin
,
L.
Tao
,
H.
Yao
,
J.
Zhang
,
Y.
Sun
,
Y.
Liu
, and
L.-P.
Hu
.
2022
.
GJB3 promotes pancreatic cancer liver metastasis by enhancing the polarization and survival of neutrophil
.
Front. Immunol.
13
:
983116
.
Iyer
,
R.P.
,
N.L.
Patterson
,
F.A.
Zouein
,
Y.
Ma
,
V.
Dive
,
L.E.
De Castro Brás
, and
M.L.
Lindsey
.
2015
.
Early matrix metalloproteinase-12 inhibition worsens post-myocardial infarction cardiac dysfunction by delaying inflammation resolution
.
Int. J. Cardiol.
185
:
198
208
.
Jaillon
,
S.
,
G.
Peri
,
Y.
Delneste
,
I.
Frémaux
,
A.
Doni
,
F.
Moalli
,
C.
Garlanda
,
L.
Romani
,
H.
Gascan
,
S.
Bellocchio
, et al
.
2007
.
The humoral pattern recognition receptor PTX3 is stored in neutrophil granules and localizes in extracellular traps
.
J. Exp. Med.
204
:
793
804
.
Jaiswal
,
S.
,
P.
Fontanillas
,
J.
Flannick
,
A.
Manning
,
P.V.
Grauman
,
B.G.
Mar
,
R.C.
Lindsley
,
C.H.
Mermel
,
N.
Burtt
,
A.
Chavez
, et al
.
2014
.
Age-related clonal hematopoiesis associated with adverse outcomes
.
N. Engl. J. Med.
371
:
2488
2498
.
Jaiswal
,
S.
,
P.
Natarajan
,
A.J.
Silver
,
C.J.
Gibson
,
A.G.
Bick
,
E.
Shvartz
,
M.
McConkey
,
N.
Gupta
,
S.
Gabriel
,
D.
Ardissino
, et al
.
2017
.
Clonal hematopoiesis and risk of atherosclerotic cardiovascular disease
.
N. Engl. J. Med.
377
:
111
121
.
Jamieson
,
T.
,
M.
Clarke
,
C.W.
Steele
,
M.S.
Samuel
,
J.
Neumann
,
A.
Jung
,
D.
Huels
,
M.F.
Olson
,
S.
Das
,
R.J.B.
Nibbs
, and
O.J.
Sansom
.
2012
.
Inhibition of CXCR2 profoundly suppresses inflammation-driven and spontaneous tumorigenesis
.
J. Clin. Invest.
122
:
3127
3144
.
Jaworski
,
C.
,
J.A.
Mariani
,
G.
Wheeler
, and
D.M.
Kaye
.
2013
.
Cardiac complications of thoracic irradiation
.
J. Am. Coll. Cardiol.
61
:
2319
2328
.
Jensen
,
H.K.
,
F.
Donskov
,
N.
Marcussen
,
M.
Nordsmark
,
F.
Lundbeck
, and
H.
Von Der Maase
.
2009
.
Presence of intratumoral neutrophils is an independent prognostic factor in localized renal cell carcinoma
.
JCO
.
27
:
4709
4717
.
Jensen
,
T.O.
,
H.
Schmidt
,
H.J.
Møller
,
F.
Donskov
,
M.
Høyer
,
P.
Sjoegren
,
I.J.
Christensen
, and
T.
Steiniche
.
2012
.
Intratumoral neutrophils and plasmacytoid dendritic cells indicate poor prognosis and are associated with pSTAT3 expression in AJCC stage I/II melanoma
.
Cancer
.
118
:
2476
2485
.
Jiang
,
C.
,
H.
Xu
, and
Y.
Wu
.
2024
.
Effect of chemotherapy in tumor on coronary arteries: Mechanisms and management
.
Life Sci.
338
:
122377
.
Jiménez-Alcázar
,
M.
,
C.
Rangaswamy
,
R.
Panda
,
J.
Bitterling
,
Y.J.
Simsek
,
A.T.
Long
,
R.
Bilyy
,
V.
Krenn
,
C.
Renné
,
T.
Renné
, et al
.
2017
.
Host DNases prevent vascular occlusion by neutrophil extracellular traps
.
Science
.
358
:
1202
1206
.
Jin
,
W.
,
H.
Yin
,
H.
Li
,
X.-J.
Yu
,
H.-X.
Xu
, and
L.
Liu
.
2021
.
Neutrophil extracellular DNA traps promote pancreatic cancer cells migration and invasion by activating EGFR/ERK pathway
.
J. Cell. Mol. Med.
25
:
5443
5456
.
Johnson
,
D.B.
,
J.M.
Balko
,
M.L.
Compton
,
S.
Chalkias
,
J.
Gorham
,
Y.
Xu
,
M.
Hicks
,
I.
Puzanov
,
M.R.
Alexander
,
T.L.
Bloomer
, et al
.
2016
.
Fulminant Myocarditis with combination immune checkpoint blockade
.
N. Engl. J. Med.
375
:
1749
1755
.
Jolly
,
S.R.
,
W.J.
Kane
,
B.G.
Hook
,
G.D.
Abrams
,
S.L.
Kunkel
, and
B.R.
Lucchesi
.
1986
.
Reduction of myocardial infarct size by neutrophil depletion: Effect of duration of occlusion
.
Am. Heart J.
112
:
682
690
.
Jorch
,
S.K.
, and
P.
Kubes
.
2017
.
An emerging role for neutrophil extracellular traps in noninfectious disease
.
Nat. Med.
23
:
279
287
.
Jung
,
H.S.
,
J.
Gu
,
J.-E.
Kim
,
Y.
Nam
,
J.W.
Song
, and
H.K.
Kim
.
2019
.
Cancer cell-induced neutrophil extracellular traps promote both hypercoagulability and cancer progression
.
PLoS One
.
14
:e0216055.
Kaltenmeier
,
C.
,
H.O.
Yazdani
,
K.
Morder
,
D.A.
Geller
,
R.L.
Simmons
, and
S.
Tohme
.
2021
.
Neutrophil extracellular traps promote T cell exhaustion in the tumor microenvironment
.
Front. Immunol.
12
:
785222
.
Kambas
,
K.
,
I.
Mitroulis
, and
K.
Ritis
.
2012
.
The emerging role of neutrophils i thrombosis-the journey of TF through NETs
.
Front. Immunol.
3
:
385
.
Kamran
,
N.
,
Y.
Li
,
M.
Sierra
,
M.S.
Alghamri
,
P.
Kadiyala
,
H.D.
Appelman
,
M.
Edwards
,
P.R.
Lowenstein
, and
M.G.
Castro
.
2018
.
Melanoma induced immunosuppression is mediated by hematopoietic dysregulation
.
OncoImmunology
.
7
:e1408750.
Kar
,
S.P.
,
P.M.
Quiros
,
M.
Gu
,
T.
Jiang
,
J.
Mitchell
,
R.
Langdon
,
V.
Iyer
,
C.
Barcena
,
M.S.
Vijayabaskar
,
M.A.
Fabre
, et al
.
2022
.
Genome-wide analyses of 200,453 individuals yield new insights into the causes and consequences of clonal hematopoiesis
.
Nat. Genet.
54
:
1155
1166
.
Kasuga
,
I.
,
S.
Makino
,
H.
Kiyokawa
,
H.
Katoh
,
Y.
Ebihara
, and
K.
Ohyashiki
.
2001
.
Tumor-related leukocytosis is linked with poor prognosis in patients with lung carcinoma
.
Cancer
.
92
:
2399
2405
.
Kawaguchi
,
M.
,
M.
Takahashi
,
T.
Hata
,
Y.
Kashima
,
F.
Usui
,
H.
Morimoto
,
A.
Izawa
,
Y.
Takahashi
,
J.
Masumoto
,
J.
Koyama
, et al
.
2011
.
Inflammasome activation of cardiac fibroblasts is essential for myocardial ischemia/reperfusion injury
.
Circulation
.
123
:
594
604
.
Kessenbrock
,
K.
,
M.
Krumbholz
,
U.
Schönermarck
,
W.
Back
,
W.L.
Gross
,
Z.
Werb
,
H.-J.
Gröne
,
V.
Brinkmann
, and
D.E.
Jenne
.
2009
.
Netting neutrophils in autoimmune small-vessel vasculitis
.
Nat. Med.
15
:
623
625
.
Khaled
,
Y.S.
,
B.J.
Ammori
, and
E.
Elkord
.
2014
.
Increased levels of granulocytic myeloid-derived suppressor cells in peripheral blood and tumour tissue of pancreatic cancer patients
.
J. Immunol. Res.
2014
:
879897
.
Khorana
,
A.A.
,
N.M.
Kuderer
,
E.
Culakova
,
G.H.
Lyman
, and
C.W.
Francis
.
2008
.
Development and validation of a predictive model for chemotherapy-associated thrombosis
.
Blood
.
111
:
4902
4907
.
Kloosterman
,
D.J.
, and
L.
Akkari
.
2023
.
Macrophages at the interface of the co-evolving cancer ecosystem
.
Cell
.
186
:
1627
1651
.
Knight
,
J.S.
,
W.
Luo
,
A.A.
O’Dell
,
S.
Yalavarthi
,
W.
Zhao
,
V.
Subramanian
,
C.
Guo
,
R.C.
Grenn
,
P.R.
Thompson
,
D.T.
Eitzman
, and
M.J.
Kaplan
.
2014
.
Peptidylarginine deiminase inhibition reduces vascular damage and modulates innate immune responses in murine models of atherosclerosis
.
Circ. Res.
114
:
947
956
.
Koga
,
Y.
,
A.
Matsuzaki
,
A.
Suminoe
,
H.
Hattori
, and
T.
Hara
.
2004
.
Neutrophil-derived TNF-related apoptosis-inducing ligand (TRAIL): A novel mechanism of antitumor effect by neutrophils
.
Cancer Res.
64
:
1037
1043
.
Kolaczkowska
,
E.
, and
P.
Kubes
.
2013
.
Neutrophil recruitment and function in health and inflammation
.
Nat. Rev. Immunol.
13
:
159
175
.
Koliaraki
,
V.
,
A.
Henriques
,
A.
Prados
, and
G.
Kollias
.
2020
.
Unfolding innate mechanisms in the cancer microenvironment: The emerging role of the mesenchyme
.
J. Exp. Med.
217
:e20190457.
Koo
,
C.Y.
,
H.
Zheng
,
L.L.
Tan
,
L.-L.
Foo
,
R.
Seet
,
J.-H.
Chong
,
D.J.
Hausenloy
,
W.-J.
Chng
,
A.M.
Richards
,
C.-H.
Lee
, and
M.Y.
Chan
.
2021
.
Lipid profiles and outcomes of patients with prior cancer and subsequent myocardial infarction or stroke
.
Sci. Rep.
11
:
21167
.
Kravchenko
,
J.
,
M.
Berry
,
K.
Arbeev
,
H.K.
Lyerly
,
A.
Yashin
, and
I.
Akushevich
.
2015
.
Cardiovascular comorbidities and survival of lung cancer patients: Medicare data based analysis
.
Lung Cancer
.
88
:
85
93
.
Kushnir
,
M.
,
H.W.
Cohen
, and
H.H.
Billett
.
2016
.
Persistent neutrophilia is a marker for an increased risk of venous thrombosis
.
J. Thromb. Thrombolysis
.
42
:
545
551
.
Kwok
,
I.
,
E.
Becht
,
Y.
Xia
,
M.
Ng
,
Y.C.
Teh
,
L.
Tan
,
M.
Evrard
,
J.L.Y.
Li
,
H.T.N.
Tran
,
Y.
Tan
, et al
.
2020
.
Combinatorial single-cell analyses of granulocyte-monocyte progenitor heterogeneity reveals an early uni-potent neutrophil progenitor
.
Immunity
.
53
:
303
318.e5
.
Kwok
,
C.S.
,
C.W.
Wong
,
E.
Kontopantelis
,
A.
Barac
,
S.-A.
Brown
,
P.
Velagapudi
,
A.A.
Hilliard
,
A.S.
Bharadwaj
,
M.
Chadi Alraies
,
M.
Mohamed
, et al
.
2021
.
Percutaneous coronary intervention in patients with cancer and readmissions within 90 days for acute myocardial infarction and bleeding in the USA
.
Eur. Heart J.
42
:
1019
1034
.
Langseth
,
M.S.
,
R.
Helseth
,
V.
Ritschel
,
C.H.
Hansen
,
G.Ø.
Andersen
,
J.
Eritsland
,
S.
Halvorsen
,
M.W.
Fagerland
,
S.
Solheim
,
H.
Arnesen
, et al
.
2020
.
Double-stranded DNA and NETs components in relation to clinical outcome after ST-elevation myocardial infarction
.
Sci. Rep.
10
:
5007
.
Lauth
,
X.
,
M.
von Köckritz-Blickwede
,
C.W.
McNamara
,
S.
Myskowski
,
A.S.
Zinkernagel
,
B.
Beall
,
P.
Ghosh
,
R.L.
Gallo
, and
V.
Nizet
.
2009
.
M1 protein allows group A streptococcal survival in phagocyte extracellular traps through cathelicidin inhibition
.
J. Innate Immun.
1
:
202
214
.
Lawrence
,
S.M.
,
R.
Corriden
, and
V.
Nizet
.
2018
.
The ontogeny of a neutrophil: Mechanisms of granulopoiesis and homeostasis
.
Microbiol. Mol. Biol. Rev.
82
:e00057-17.
Leal
,
A.C.
,
D.M.
Mizurini
,
T.
Gomes
,
N.C.
Rochael
,
E.M.
Saraiva
,
M.S.
Dias
,
C.C.
Werneck
,
M.S.
Sielski
,
C.P.
Vicente
, and
R.Q.
Monteiro
.
2017
.
Tumor-derived exosomes induce the formation of neutrophil extracellular traps: Implications for the establishment of cancer-associated thrombosis
.
Sci. Rep.
7
:
6438
.
Lechner
,
M.G.
,
D.J.
Liebertz
, and
A.L.
Epstein
.
2010
.
Characterization of cytokine-induced myeloid-derived suppressor cells from normal human peripheral blood mononuclear cells
.
J. Immunol.
185
:
2273
2284
.
Lee
,
A.Y.Y.
, and
M.N.
Levine
.
2003
.
Venous thromboembolism and cancer: Risks and outcomes
.
Circulation
.
107
:
I17
I21
.
Lee
,
W.
,
S.Y.
Ko
,
M.S.
Mohamed
,
H.A.
Kenny
,
E.
Lengyel
, and
H.
Naora
.
2019
.
Neutrophils facilitate ovarian cancer premetastatic niche formation in the omentum
.
J. Exp. Med.
216
:
176
194
.
Li
,
Y.-W.
,
S.-J.
Qiu
,
J.
Fan
,
J.
Zhou
,
Q.
Gao
,
Y.-S.
Xiao
, and
Y.-F.
Xu
.
2011
.
Intratumoral neutrophils: A poor prognostic factor for hepatocellular carcinoma following resection
.
J. Hepatol.
54
:
497
505
.
Li
,
P.
,
M.
Lu
,
J.
Shi
,
Z.
Gong
,
L.
Hua
,
Q.
Li
,
B.
Lim
,
X.H.-F.
Zhang
,
X.
Chen
,
S.
Li
, et al
.
2020
.
Lung mesenchymal cells elicit lipid storage in neutrophils that fuel breast cancer lung metastasis
.
Nat. Immunol.
21
:
1444
1455
.
Li
,
C.
,
C.
Zhang
, and
X.
Li
.
2025
.
Clonal hematopoiesis of indeterminate potential: Contribution to disease and promising interventions
.
Mol. Cell. Biochem.
480
:
4091
4106
.
Libby
,
P.
, and
S.
Kobold
.
2019
.
Inflammation: A common contributor to cancer, aging, and cardiovascular diseases—expanding the concept of cardio-oncology
.
Cardiovasc. Res.
115
:
824
829
.
Lin
,
J.H.
,
A.P.
Huffman
,
M.M.
Wattenberg
,
D.M.
Walter
,
E.L.
Carpenter
,
D.M.
Feldser
,
G.L.
Beatty
,
E.E.
Furth
, and
R.H.
Vonderheide
.
2020
.
Type 1 conventional dendritic cells are systemically dysregulated early in pancreatic carcinogenesis
.
J. Exp. Med.
217
:e20190673.
Lindvig
,
K.
,
H.
Møller
,
J.
Mosbech
, and
O.M.
Jensen
.
1990
.
The pattern of cancer in a large cohort of stroke patients
.
Int. J. Epidemiol.
19
:
498
504
.
Liu
,
J.
,
D.
Yang
,
X.
Wang
,
Z.
Zhu
,
T.
Wang
,
A.
Ma
, and
P.
Liu
.
2019a
.
Neutrophil extracellular traps and dsDNA predict outcomes among patients with ST-elevation myocardial infarction
.
Sci. Rep.
9
:
11599
.
Liu
,
Y.Y.
,
Q.F.
Yang
,
J.S.
Yang
,
R.B.
Cao
,
J.Y.
Liang
,
Y.T.
Liu
,
Y.L.
Zeng
,
S.
Chen
,
X.F.
Xia
,
K.
Zhang
, and
L.
Liu
.
2019b
.
Characteristics and prognostic significance of profiling the peripheral blood T‐cell receptor repertoire in patients with advanced lung cancer
.
Int. J. Cancer
.
145
:
1423
1431
.
Liyanage
,
U.K.
,
T.T.
Moore
,
H.-G.
Joo
,
Y.
Tanaka
,
V.
Herrmann
,
G.
Doherty
,
J.A.
Drebin
,
S.M.
Strasberg
,
T.J.
Eberlein
,
P.S.
Goedegebuure
, and
D.C.
Linehan
.
2002
.
Prevalence of regulatory T cells is increased in peripheral blood and tumor microenvironment of patients with pancreas or breast adenocarcinoma
.
J. Immunol.
169
:
2756
2761
.
Lotfinejad
,
P.
,
M.
Asghari Jafarabadi
,
M.
Abdoli Shadbad
,
T.
Kazemi
,
F.
Pashazadeh
,
S.
Sandoghchian Shotorbani
,
F.
Jadidi Niaragh
,
A.
Baghbanzadeh
,
N.
Vahed
,
N.
Silvestris
, and
B.
Baradaran
.
2020
.
Prognostic role and clinical significance of tumor-infiltrating lymphocyte (TIL) and programmed death ligand 1 (PD-L1) expression in triple-negative breast cancer (TNBC): A systematic review and meta-analysis study
.
Diagnostics
.
10
:
704
.
Luo
,
J.
,
J.Q.
Thomassen
,
B.G.
Nordestgaard
,
A.
Tybjærg-Hansen
, and
R.
Frikke-Schmidt
.
2023
.
Neutrophil counts and cardiovascular disease
.
Eur. Heart J.
44
:
4953
4964
.
Lyman
,
G.H.
,
M.
Carrier
,
C.
Ay
,
M.
Di Nisio
,
L.K.
Hicks
,
A.A.
Khorana
,
A.D.
Leavitt
,
A.Y.Y.
Lee
,
F.
Macbeth
,
R.L.
Morgan
, et al
.
2021
.
American society of hematology 2021 guidelines for management of venous thromboembolism: Prevention and treatment in patients with cancer
.
Blood Adv.
5
:
927
974
.
Ma
,
Y.
,
A.
Yabluchanskiy
,
R.P.
Iyer
,
P.L.
Cannon
,
E.R.
Flynn
,
M.
Jung
,
J.
Henry
,
C.A.
Cates
,
K.Y.
Deleon-Pennell
, and
M.L.
Lindsey
.
2016
.
Temporal neutrophil polarization following myocardial infarction
.
Cardiovasc. Res.
110
:
51
61
.
Maas
,
R.R.
,
K.
Soukup
,
N.
Fournier
,
M.
Massara
,
S.
Galland
,
M.
Kornete
,
V.
Wischnewski
,
J.
Lourenco
,
D.
Croci
,
Á.F.
Álvarez-Prado
, et al
.
2023
.
The local microenvironment drives activation of neutrophils in human brain tumors
.
Cell
.
186
:
4546
4566.e27
.
Mackman
,
N.
2008
.
Triggers, targets and treatments for thrombosis
.
Nature
.
451
:
914
918
.
Mackman
,
N.
2012
.
New insights into the mechanisms of venous thrombosis
.
J. Clin. Invest.
122
:
2331
2336
.
Mahiddine
,
K.
,
A.
Blaisdell
,
S.
Ma
,
A.
Créquer-Grandhomme
,
C.A.
Lowell
, and
A.
Erlebacher
.
2020
.
Relief of tumor hypoxia unleashes the tumoricidal potential of neutrophils
.
J. Clin. Invest.
130
:
389
403
.
Mahmood
,
S.S.
,
M.G.
Fradley
,
J.V.
Cohen
,
A.
Nohria
,
K.L.
Reynolds
,
L.M.
Heinzerling
,
R.J.
Sullivan
,
R.
Damrongwatanasuk
,
C.L.
Chen
,
D.
Gupta
, et al
.
2018
.
Myocarditis in patients treated with immune checkpoint inhibitors
.
J. Am. Coll. Cardiol.
71
:
1755
1764
.
Mamessier
,
E.
,
A.
Sylvain
,
M.-L.
Thibult
,
G.
Houvenaeghel
,
J.
Jacquemier
,
R.
Castellano
,
A.
Gonçalves
,
P.
André
,
F.
Romagné
,
G.
Thibault
, et al
.
2011
.
Human breast cancer cells enhance self tolerance by promoting evasion from NK cell antitumor immunity
.
J. Clin. Invest.
121
:
3609
3622
.
Mangold
,
A.
,
S.
Alias
,
T.
Scherz
,
T.
Hofbauer
,
J.
Jakowitsch
,
A.
Panzenböck
,
D.
Simon
,
D.
Laimer
,
C.
Bangert
,
A.
Kammerlander
, et al
.
2015
.
Coronary neutrophil extracellular trap burden and deoxyribonuclease activity in ST-elevation acute coronary syndrome are predictors of ST-segment resolution and infarct size
.
Circ. Res.
116
:
1182
1192
.
Manuel
,
M.
,
O.
Tredan
,
T.
Bachelot
,
G.
Clapisson
,
A.
Courtier
,
G.
Parmentier
,
T.
Rabeony
,
A.
Grives
,
S.
Perez
,
J.F.
Mouret
, et al
.
2012
.
Lymphopenia combined with low TCR diversity (divpenia) predicts poor overall survival in metastatic breast cancer patients
.
OncoImmunology
.
1
:
432
440
.
Manz
,
M.G.
, and
S.
Boettcher
.
2014
.
Emergency granulopoiesis
.
Nat. Rev. Immunol.
14
:
302
314
.
Marenzi
,
G.
,
D.
Cardinale
,
N.
Cosentino
,
F.
Trombara
,
P.
Poggio
,
O.
Leoni
,
F.
Bortolan
,
M.
Resta
,
C.
Lucci
,
N.
Capra
, et al
.
2025
.
Characteristics and outcomes of patients with cancer hospitalized with new onset acute heart failure
.
ESC Heart Fail.
12
:
554
563
.
Martin
,
C.
,
P.C.E.
Burdon
,
G.
Bridger
,
J.C.
Gutierrez-Ramos
,
T.J.
Williams
, and
S.M.
Rankin
.
2003
.
Chemokines acting via CXCR2 and CXCR4 control the release of neutrophils from the bone marrow and their return following senescence
.
Immunity
.
19
:
583
593
.
Martincorena
,
I.
2019
.
Somatic mutation and clonal expansions in human tissues
.
Genome Med.
11
:
35
.
Martinod
,
K.
,
M.
Demers
,
T.A.
Fuchs
,
S.L.
Wong
,
A.
Brill
,
M.
Gallant
,
J.
Hu
,
Y.
Wang
, and
D.D.
Wagner
.
2013
.
Neutrophil histone modification by peptidylarginine deiminase 4 is critical for deep vein thrombosis in mice
.
Proc. Natl. Acad. Sci. USA
.
110
:
8674
8679
.
Massberg
,
S.
,
L.
Grahl
,
M.-L.
Von Bruehl
,
D.
Manukyan
,
S.
Pfeiler
,
C.
Goosmann
,
V.
Brinkmann
,
M.
Lorenz
,
K.
Bidzhekov
,
A.B.
Khandagale
, et al
.
2010
.
Reciprocal coupling of coagulation and innate immunity via neutrophil serine proteases
.
Nat. Med.
16
:
887
896
.
Matlung
,
H.L.
,
L.
Babes
,
X.W.
Zhao
,
M.
van Houdt
,
L.W.
Treffers
,
D.J.
van Rees
,
K.
Franke
,
K.
Schornagel
,
P.
Verkuijlen
,
H.
Janssen
, et al
.
2018
.
Neutrophils kill antibody-opsonized cancer cells by trogoptosis
.
Cell Rep.
23
:
3946
3959.e6
.
Matsushima
,
H.
,
S.
Geng
,
R.
Lu
,
T.
Okamoto
,
Y.
Yao
,
N.
Mayuzumi
,
P.F.
Kotol
,
B.J.
Chojnacki
,
T.
Miyazaki
,
R.L.
Gallo
, and
A.
Takashima
.
2013
.
Neutrophil differentiation into a unique hybrid population exhibiting dual phenotype and functionality of neutrophils and dendritic cells
.
Blood
.
121
:
1677
1689
.
Matzen
,
E.
,
L.E.
Bartels
,
B.
Løgstrup
,
S.
Horskær
,
C.
Stilling
, and
F.
Donskov
.
2021
.
Immune checkpoint inhibitor-induced myocarditis in cancer patients: A case report and review of reported cases
.
Cardiooncology.
7
:
27
.
Maugeri
,
N.
,
L.
Campana
,
M.
Gavina
,
C.
Covino
,
M.
De Metrio
,
C.
Panciroli
,
L.
Maiuri
,
A.
Maseri
,
A.
D’Angelo
,
M.E.
Bianchi
, et al
.
2014
.
Activated platelets present high mobility group box 1 to neutrophils, inducing autophagy and promoting the extrusion of neutrophil extracellular traps
.
J. Thromb. Haemost.
12
:
2074
2088
.
Mauracher
,
L.-M.
,
F.
Posch
,
K.
Martinod
,
E.
Grilz
,
T.
Däullary
,
L.
Hell
,
C.
Brostjan
,
C.
Zielinski
,
C.
Ay
,
D.D.
Wagner
, et al
.
2018
.
Citrullinated histone H3, a biomarker of neutrophil extracellular trap formation, predicts the risk of venous thromboembolism in cancer patients
.
J. Thromb. Haemost.
16
:
508
518
.
Mawhin
,
M.-A.
,
P.
Tilly
,
G.
Zirka
,
A.-L.
Charles
,
F.
Slimani
,
J.-L.
Vonesch
,
J.-B.
Michel
,
M.
Bäck
,
X.
Norel
, and
J.-E.
Fabre
.
2018
.
Neutrophils recruited by leukotriene B4 induce features of plaque destabilization during endotoxaemia
.
Cardiovasc. Res.
114
:
1656
1666
.
May
,
J.E.
, and
S.
Moll
.
2021
.
Unexplained arterial thrombosis: Approach to diagnosis and treatment
.
Hematol. Am. Soc. Hematol. Educ. Program
.
2021
:
76
84
.
McCarthy
,
C.G.
,
P.
Saha
,
R.M.
Golonka
,
C.F.
Wenceslau
,
B.
Joe
, and
M.
Vijay-Kumar
.
2021
.
Innate immune cells and hypertension: Neutrophils and neutrophil extracellular traps (NETs)
.
Compr. Physiol.
11
:
1575
1589
.
McDowell
,
S.A.C.
,
R.B.E.
Luo
,
A.
Arabzadeh
,
S.
Doré
,
N.C.
Bennett
,
V.
Breton
,
E.
Karimi
,
M.
Rezanejad
,
R.R.
Yang
,
K.D.
Lach
, et al
.
2021
.
Neutrophil oxidative stress mediates obesity-associated vascular dysfunction and metastatic transmigration
.
Nat. Cancer
.
2
:
545
562
.
Megens
,
R.T.A.
,
S.
Vijayan
,
D.
Lievens
,
Y.
Döring
,
M.A.M.J.
Van Zandvoort
,
J.
Grommes
,
C.
Weber
, and
O.
Soehnlein
.
2012
.
Presence of luminal neutrophil extracellular traps in atherosclerosis
.
Thromb. Haemost.
107
:
597
598
.
Melson
,
J.W.
,
B.
Koethe
,
S.
Mohanty
,
S.
Babroudi
,
C.
Bao
,
A.
Chunduru
,
H.
Dwaah
,
M.
Finn
,
A.
Jain
,
M.
Lalla
, et al
.
2024
.
Atherosclerotic cardiovascular disease risk and longitudinal risk factor management among patients with breast cancer
.
Clin. Breast Cancer
.
24
:
e71
e79.e4
.
Mendonça
,
M.A.O.
,
F.Q.
Cunha
,
E.F.C.
Murta
, and
B.M.
Tavares-Murta
.
2006
.
Failure of neutrophil chemotactic function in breast cancer patients treated with chemotherapy
.
Cancer Chemother. Pharmacol.
57
:
663
670
.
Mensurado
,
S.
,
M.
Rei
,
T.
Lança
,
M.
Ioannou
,
N.
Gonçalves-Sousa
,
H.
Kubo
,
M.
Malissen
,
V.
Papayannopoulos
,
K.
Serre
, and
B.
Silva-Santos
.
2018
.
Tumor-associated neutrophils suppress pro-tumoral IL-17+ γδ T cells through induction of oxidative stress
.
PLoS Biol.
16
:e2004990.
Miller
,
K.D.
,
L.
Nogueira
,
A.B.
Mariotto
,
J.H.
Rowland
,
K.R.
Yabroff
,
C.M.
Alfano
,
A.
Jemal
,
J.L.
Kramer
, and
R.L.
Siegel
.
2019
.
Cancer treatment and survivorship statistics, 2019
.
CA. Cancer J. Clin.
69
:
363
385
.
Miller
,
P.G.
,
D.
Qiao
,
J.
Rojas-Quintero
,
M.C.
Honigberg
,
A.S.
Sperling
,
C.J.
Gibson
,
A.G.
Bick
,
A.
Niroula
,
M.E.
McConkey
,
B.
Sandoval
, et al
.
2022
.
Association of clonal hematopoiesis with chronic obstructive pulmonary disease
.
Blood
.
139
:
357
368
.
Miller-Ocuin
,
J.L.
,
X.
Liang
,
B.A.
Boone
,
W.R.
Doerfler
,
A.D.
Singhi
,
D.
Tang
,
R.
Kang
,
M.T.
Lotze
, and
H.J.
Zeh
.
2019
.
DNA released from neutrophil extracellular traps (NETs) activates pancreatic stellate cells and enhances pancreatic tumor growth
.
Oncoimmunology
.
8
:e1605822.
Mishalian
,
I.
,
R.
Bayuh
,
E.
Eruslanov
,
J.
Michaeli
,
L.
Levy
,
L.
Zolotarov
,
S.
Singhal
,
S.M.
Albelda
,
Z.
Granot
, and
Z.G.
Fridlender
.
2014
.
Neutrophils recruit regulatory T-cells into tumors via secretion of CCL17--a new mechanism of impaired antitumor immunity
.
Int. J. Cancer
.
135
:
1178
1186
.
Mittmann
,
L.A.
,
F.
Haring
,
J.B.
Schaubächer
,
R.
Hennel
,
B.
Smiljanov
,
G.
Zuchtriegel
,
M.
Canis
,
O.
Gires
,
F.
Krombach
,
L.
Holdt
, et al
.
2021
.
Uncoupled biological and chronological aging of neutrophils in cancer promotes tumor progression
.
J. Immunother. Cancer
.
9
:e003495.
Mollica Poeta
,
V.
,
M.
Massara
,
A.
Capucetti
, and
R.
Bonecchi
.
2019
.
Chemokines and chemokine receptors: New targets for cancer immunotherapy
.
Front. Immunol.
10
:
379
.
Morales
,
J.K.
,
M.
Kmieciak
,
K.L.
Knutson
,
H.D.
Bear
, and
M.H.
Manjili
.
2010
.
GM-CSF is one of the main breast tumor-derived soluble factors involved in the differentiation of CD11b-Gr1- bone marrow progenitor cells into myeloid-derived suppressor cells
.
Breast Cancer Res. Treat.
123
:
39
49
.
Morganti
,
M.
,
A.
Carpi
,
A.
Nicolini
,
I.
Gorini
,
B.
Glaviano
,
M.
Fini
,
G.
Giavaresi
,
Ch.
Mittermayer
, and
R.
Giardino
.
2002
.
Atherosclerosis and cancer: Common pathways on the vascular endothelium
.
Biomed. Pharmacother.
56
:
317
324
.
Morrissey
,
S.M.
,
L.G.
Kirkland
,
T.K.
Phillips
,
R.D.
Levit
,
A.
Hopke
, and
B.C.
Jensen
.
2025
.
Multifaceted roles of neutrophils in cardiac disease
.
J. Leukoc. Biol.
117
:
qiaf017
.
Mulder
,
F.I.
,
E.
Horváth-Puhó
,
N.
Van Es
,
H.W.M.
Van Laarhoven
,
L.
Pedersen
,
F.
Moik
,
C.
Ay
,
H.R.
Büller
, and
H.T.
Sørensen
.
2021
.
Venous thromboembolism in cancer patients: A population-based cohort study
.
Blood
.
137
:
1959
1969
.
Murakami
,
Y.
,
H.
Saito
,
S.
Shimizu
,
Y.
Kono
,
Y.
Shishido
,
K.
Miyatani
,
T.
Matsunaga
,
Y.
Fukumoto
,
K.
Ashida
,
T.
Sakabe
, et al
.
2019
.
Increased regulatory B cells are involved in immune evasion in patients with gastric cancer
.
Sci. Rep.
9
:
13083
.
Najmeh
,
S.
,
J.
Cools-Lartigue
,
R.F.
Rayes
,
S.
Gowing
,
P.
Vourtzoumis
,
F.
Bourdeau
,
B.
Giannias
,
J.
Berube
,
S.
Rousseau
,
L.E.
Ferri
, and
J.D.
Spicer
.
2017
.
Neutrophil extracellular traps sequester circulating tumor cells via β1-integrin mediated interactions
.
Int. J. Cancer
.
140
:
2321
2330
.
Navi
,
B.B.
,
A.S.
Reiner
,
H.
Kamel
,
C.
Iadecola
,
P.M.
Okin
,
M.S.V.
Elkind
,
K.S.
Panageas
, and
L.M.
DeAngelis
.
2017
.
Risk of arterial thromboembolism in patients with cancer
.
J. Am. Coll. Cardiol.
70
:
926
938
.
Navi
,
B.B.
,
A.S.
Reiner
,
H.
Kamel
,
C.
Iadecola
,
P.M.
Okin
,
S.T.
Tagawa
,
K.S.
Panageas
, and
L.M.
DeAngelis
.
2019
.
Arterial thromboembolic events preceding the diagnosis of cancer in older persons
.
Blood
.
133
:
781
789
.
Ng
,
L.G.
,
R.
Ostuni
, and
A.
Hidalgo
.
2019
.
Heterogeneity of neutrophils
.
Nat. Rev. Immunol.
19
:
255
265
.
Ng
,
M.S.F.
,
I.
Kwok
,
L.
Tan
,
C.
Shi
,
D.
Cerezo-Wallis
,
Y.
Tan
,
K.
Leong
,
G.F.
Calvo
,
K.
Yang
,
Y.
Zhang
, et al
.
2024
.
Deterministic reprogramming of neutrophils within tumors
.
Science
.
383
:eadf6493.
Ng
,
M.
,
D.
Cerezo-Wallis
,
L.G.
Ng
, and
A.
Hidalgo
.
2025
.
Adaptations of neutrophils in cancer
.
Immunity
.
58
:
40
58
.
Nicolás-Ávila
,
J.Á.
,
J.M.
Adrover
, and
A.
Hidalgo
.
2017
.
Neutrophils in homeostasis, immunity, and cancer
.
Immunity
.
46
:
15
28
.
Nie
,
M.
,
L.
Yang
,
X.
Bi
,
Y.
Wang
,
P.
Sun
,
H.
Yang
,
P.
Liu
,
Z.
Li
,
Y.
Xia
, and
W.
Jiang
.
2019
.
Neutrophil extracellular traps induced by IL8 promote diffuse large B-cell lymphoma progression via the TLR9 signaling
.
Clin. Cancer Res.
25
:
1867
1879
.
Nishizawa
,
M.
,
M.
Tsuchiya
,
R.
Watanabe-Fukunaga
, and
S.
Nagata
.
1990
.
Multiple elements in the promoter of granulocyte colony-stimulating factor gene regulate its constitutive expression in human carcinoma cells
.
J. Biol. Chem.
265
:
5897
5902
.
Nozawa
,
H.
,
C.
Chiu
, and
D.
Hanahan
.
2006
.
Infiltrating neutrophils mediate the initial angiogenic switch in a mouse model of multistage carcinogenesis
.
Proc. Natl. Acad. Sci. USA
.
103
:
12493
12498
.
Otten
,
H.M.
, and
M.H.
Prins
.
2001
.
Venous thromboembolism and occult malignancy
.
Thromb. Res.
102
:
V187
V194
.
Pantazi
,
D.
,
D.
Alivertis
, and
A.D.
Tselepis
.
2024
.
Underlying mechanisms of thrombosis associated with cancer and anticancer therapies
.
Curr. Treat. Options Oncol.
25
:
897
913
.
Papayannopoulos
,
V.
2018
.
Neutrophil extracellular traps in immunity and disease
.
Nat. Rev. Immunol.
18
:
134
147
.
Pareek
,
N.
,
J.
Cevallos
,
P.
Moliner
,
M.
Shah
,
L.L.
Tan
,
V.
Chambers
,
A.J.
Baksi
,
R.S.
Khattar
,
R.
Sharma
,
S.D.
Rosen
, and
A.R.
Lyon
.
2018
.
Activity and outcomes of a cardio‐oncology service in the United Kingdom—a five‐year experience
.
Eur. J. Heart Fail.
20
:
1721
1731
.
Park
,
J.
,
R.W.
Wysocki
,
Z.
Amoozgar
,
L.
Maiorino
,
M.R.
Fein
,
J.
Jorns
,
A.F.
Schott
,
Y.
Kinugasa-Katayama
,
Y.
Lee
,
N.H.
Won
, et al
.
2016
.
Cancer cells induce metastasis-supporting neutrophil extracellular DNA traps
.
Sci. Transl. Med.
8
:
361ra138
.
Parseghian
,
M.H.
, and
K.A.
Luhrs
.
2006
.
Beyond the walls of the nucleus: The role of histones in cellular signaling and innate immunity
.
Biochem. Cell Biol
.
84
:
589
604
.
Paterson
,
D.I.
,
N.
Wiebe
,
W.Y.
Cheung
,
J.R.
Mackey
,
E.
Pituskin
,
A.
Reiman
, and
M.
Tonelli
.
2022
.
Incident cardiovascular disease among adults with cancer: A population-based cohort study
.
JACC. Cardiooncol.
4
:
85
94
.
Pavo
,
N.
,
M.
Raderer
,
M.
Hülsmann
,
S.
Neuhold
,
C.
Adlbrecht
,
G.
Strunk
,
G.
Goliasch
,
H.
Gisslinger
,
G.G.
Steger
,
M.
Hejna
, et al
.
2015
.
Cardiovascular biomarkers in patients with cancer and their association with all-cause mortality
.
Heart
.
101
:
1874
1880
.
Peet
,
C.
,
A.
Ivetic
,
D.I.
Bromage
, and
A.M.
Shah
.
2020
.
Cardiac monocytes and macrophages after myocardial infarction
.
Cardiovasc. Res.
116
:
1101
1112
.
Peinado
,
H.
,
M.
Alečković
,
S.
Lavotshkin
,
I.
Matei
,
B.
Costa-Silva
,
G.
Moreno-Bueno
,
M.
Hergueta-Redondo
,
C.
Williams
,
G.
García-Santos
,
C.
Ghajar
, et al
.
2012
.
Melanoma exosomes educate bone marrow progenitor cells toward a pro-metastatic phenotype through MET
.
Nat. Med.
18
:
883
891
.
Peña-Martínez
,
C.
,
V.
Durán-Laforet
,
A.
García-Culebras
,
F.
Ostos
,
M.
Hernández-Jiménez
,
I.
Bravo-Ferrer
,
A.
Pérez-Ruiz
,
F.
Ballenilla
,
J.
Díaz-Guzmán
,
J.M.
Pradillo
, et al
.
2019
.
Pharmacological modulation of neutrophil extracellular traps reverses thrombotic stroke tPA (Tissue-type plasminogen activator) resistance
.
Stroke
.
50
:
3228
3237
.
Peña-Martínez
,
C.
,
V.
Durán-Laforet
,
A.
García-Culebras
,
M.I.
Cuartero
,
M.Á.
Moro
, and
I.
Lizasoain
.
2022
.
Neutrophil extracellular trap targeting protects against ischemic damage after fibrin-rich thrombotic stroke despite non-reperfusion
.
Front. Immunol.
13
:
790002
.
Pérez-Olivares
,
L.
, and
O.
Soehnlein
.
2021
.
Contemporary lifestyle and neutrophil extracellular traps: An emerging link in atherosclerosis disease
.
Cells
.
10
:
1985
.
Pham
,
C.T.N.
2006
.
Neutrophil serine proteases: Specific regulators of inflammation
.
Nat. Rev. Immunol.
6
:
541
550
.
Pich
,
O.
,
E.
Bernard
,
M.
Zagorulya
,
A.
Rowan
,
C.
Pospori
,
R.
Slama
,
H.
Huerga Encabo
,
J.
O’Sullivan
,
D.
Papazoglou
,
P.
Anastasiou
, et al
.
2025
.
Tumor-infiltrating clonal hematopoiesis
.
N. Engl. J. Med.
392
:
1594
1608
.
Poels
,
K.
,
S.I.M.
Neppelenbroek
,
M.J.
Kersten
,
M.L.
Antoni
,
E.
Lutgens
, and
T.T.P.
Seijkens
.
2021
.
Immune checkpoint inhibitor treatment and atherosclerotic cardiovascular disease: An emerging clinical problem
.
J. Immunother. Cancer
.
9
:e002916.
Ponzetta
,
A.
,
R.
Carriero
,
S.
Carnevale
,
M.
Barbagallo
,
M.
Molgora
,
C.
Perucchini
,
E.
Magrini
,
F.
Gianni
,
P.
Kunderfranco
,
N.
Polentarutti
, et al
.
2019
.
Neutrophils driving unconventional T Cells mediate resistance against murine sarcomas and selected human tumors
.
Cell
.
178
:
346
360.e24
.
Pothineni
,
N.V.
,
N.N.
Shah
,
Y.
Rochlani
,
M.
Saad
,
S.
Kovelamudi
,
K.
Marmagkiolis
,
S.
Bhatti
,
M.
Cilingiroglu
,
W.S.
Aronow
, and
A.
Hakeem
.
2017
.
Temporal trends and outcomes of acute myocardial infarction in patients with cancer
.
Ann. Transl. Med.
5
:
482
.
Quail
,
D.F.
,
B.
Amulic
,
M.
Aziz
,
B.J.
Barnes
,
E.
Eruslanov
,
Z.G.
Fridlender
,
H.S.
Goodridge
,
Z.
Granot
,
A.
Hidalgo
,
A.
Huttenlocher
, et al
.
2022
.
Neutrophil phenotypes and functions in cancer: A consensus statement
.
J. Exp. Med.
219
:e20220011.
Quillard
,
T.
,
H.A.
Araújo
,
G.
Franck
,
E.
Shvartz
,
G.
Sukhova
, and
P.
Libby
.
2015
.
TLR2 and neutrophils potentiate endothelial stress, apoptosis and detachment: Implications for superficial erosion
.
Eur. Heart J.
36
:
1394
1404
.
Quin
,
C.
,
E.N.
DeJong
,
E.K.
Cook
,
Y.Z.
Luo
,
C.
Vlasschaert
,
S.
Sadh
,
A.J.
McNaughton
,
M.M.
Buttigieg
,
J.A.
Breznik
,
A.E.
Kennedy
, et al
.
2024
.
Neutrophil-mediated innate immune resistance to bacterial pneumonia is dependent on Tet2 function
.
J. Clin. Invest.
134
:e171002.
Rabas
,
N.
,
R.M.M.
Ferreira
,
S.
Di Blasio
, and
I.
Malanchi
.
2024
.
Cancer-induced systemic pre-conditioning of distant organs: Building a niche for metastatic cells
.
Nat. Rev. Cancer
.
24
:
829
849
.
Rada
,
B.
2017
.
Neutrophil extracellular traps and microcrystals
.
J. Immunol. Res.
2017
:
2896380
.
Radsak
,
M.
,
C.
Iking‐Konert
,
S.
Stegmaier
,
K.
Andrassy
, and
G.M.
Hänsch
.
2000
.
Polymorphonuclear neutrophils as accessory cells for T‐cell activation: Major histocompatibility complex class II restricted antigen‐dependent induction of T‐cell proliferation
.
Immunology
.
101
:
521
530
.
Rakaee
,
M.
,
L.-T.
Busund
,
E.-E.
Paulsen
,
E.
Richardsen
,
S.
Al-Saad
,
S.
Andersen
,
T.
Donnem
,
R.M.
Bremnes
, and
T.K.
Kilvaer
.
2016
.
Prognostic effect of intratumoral neutrophils across histological subtypes of non-small cell lung cancer
.
Oncotarget
.
7
:
72184
72196
.
Rao
,
H.-L.
,
J.-W.
Chen
,
M.
Li
,
Y.-B.
Xiao
,
J.
Fu
,
Y.-X.
Zeng
,
M.-Y.
Cai
, and
D.
Xie
.
2012
.
Increased intratumoral neutrophil in colorectal carcinomas correlates closely with malignant phenotype and predicts patients’ adverse prognosis
.
PLoS ONE
.
7
:e30806.
Raposeiras Roubín
,
S.
, and
A.
Cordero
.
2019
.
The two-way relationship between cancer and atherosclerosis
.
Rev. Esp. Cardiol.
72
:
487
494
.
Ray-Coquard
,
I.
,
C.
Cropet
,
M.
Van Glabbeke
,
C.
Sebban
,
A.
Le Cesne
,
I.
Judson
,
O.
Tredan
,
J.
Verweij
,
P.
Biron
,
I.
Labidi
, et al
.
2009
.
Lymphopenia as a prognostic factor for overall survival in advanced carcinomas, sarcomas, and lymphomas
.
Cancer Res.
69
:
5383
5391
.
Rayes
,
R.F.
,
J.G.
Mouhanna
,
I.
Nicolau
,
F.
Bourdeau
,
B.
Giannias
,
S.
Rousseau
,
D.
Quail
,
L.
Walsh
,
V.
Sangwan
,
N.
Bertos
, et al
.
2019
.
Primary tumors induce neutrophil extracellular traps with targetable metastasis promoting effects
.
JCI Insight
.
5
:e128008.
Rayes
,
R.F.
,
P.
Vourtzoumis
,
M.
Bou Rjeily
,
R.
Seth
,
F.
Bourdeau
,
B.
Giannias
,
J.
Berube
,
Y.-H.
Huang
,
S.
Rousseau
,
S.
Camilleri-Broet
, et al
.
2020
.
Neutrophil extracellular trap-associated CEACAM1 as a putative therapeutic target to prevent metastatic progression of colon carcinoma
.
J. Immunol.
204
:
2285
2294
.
Ren
,
J.
,
J.
He
,
H.
Zhang
,
Y.
Xia
,
Z.
Hu
,
P.
Loughran
,
T.
Billiar
,
H.
Huang
, and
A.
Tsung
.
2021
.
Platelet TLR4-ERK5 axis facilitates NET-mediated capturing of circulating tumor cells and distant metastasis after surgical stress
.
Cancer Res.
81
:
2373
2385
.
Ridker
,
P.M.
,
N.
Rifai
,
M.
Pfeffer
,
F.
Sacks
,
S.
Lepage
, and
E.
Braunwald
.
2000
.
Elevation of tumor necrosis factor-alpha and increased risk of recurrent coronary events after myocardial infarction
.
Circulation
.
101
:
2149
2153
.
Rinde
,
L.B.
,
B.
Småbrekke
,
E.M.
Hald
,
E.E.
Brodin
,
I.
Njølstad
,
E.B.
Mathiesen
,
M.-L.
Løchen
,
T.
Wilsgaard
,
S.K.
Brækkan
,
A.
Vik
, and
J.-B.
Hansen
.
2017
.
Myocardial infarction and future risk of cancer in the general population—the Tromsø Study
.
Eur. J. Epidemiol.
32
:
193
201
.
Romson
,
J.L.
,
B.G.
Hook
,
S.L.
Kunkel
,
G.D.
Abrams
,
M.A.
Schork
, and
B.R.
Lucchesi
.
1983
.
Reduction of the extent of ischemic myocardial injury by neutrophil depletion in the dog
.
Circulation
.
67
:
1016
1023
.
Rosell
,
A.
,
K.
Martinod
,
N.
Mackman
, and
C.
Thålin
.
2022
.
Neutrophil extracellular traps and cancer-associated thrombosis
.
Thromb. Res.
213
:
S35
S41
.
Sagiv
,
J.Y.
,
J.
Michaeli
,
S.
Assi
,
I.
Mishalian
,
H.
Kisos
,
L.
Levy
,
P.
Damti
,
D.
Lumbroso
,
L.
Polyansky
,
R.V.
Sionov
, et al
.
2015
.
Phenotypic diversity and plasticity in circulating neutrophil subpopulations in cancer
.
Cell Rep.
10
:
562
573
.
Salazar-Camelo
,
R.A.
,
E.A.
Moreno-Vargas
,
A.F.
Cardona
, and
H.F.
Bayona-Ortiz
.
2021
.
Ischemic stroke: A paradoxical manifestation of cancer
.
Crit. Rev. Oncol. Hematol.
157
:
103181
.
Savchenko
,
A.S.
,
J.I.
Borissoff
,
K.
Martinod
,
S.F.
De Meyer
,
M.
Gallant
,
L.
Erpenbeck
,
A.
Brill
,
Y.
Wang
, and
D.D.
Wagner
.
2014
.
VWF-mediated leukocyte recruitment with chromatin decondensation by PAD4 increases myocardial ischemia/reperfusion injury in mice
.
Blood
.
123
:
141
148
.
Saxena
,
A.
,
W.
Chen
,
Y.
Su
,
V.
Rai
,
O.U.
Uche
,
N.
Li
, and
N.G.
Frangogiannis
.
2013
.
IL-1 induces proinflammatory leukocyte infiltration and regulates fibroblast phenotype in the infarcted myocardium
.
J. Immunol.
191
:
4838
4848
.
Schedel
,
F.
,
S.
Mayer-Hain
,
K.I.
Pappelbaum
,
D.
Metze
,
M.
Stock
,
T.
Goerge
,
K.
Loser
,
C.
Sunderkötter
,
T.A.
Luger
, and
C.
Weishaupt
.
2020
.
Evidence and impact of neutrophil extracellular traps in malignant melanoma
.
Pigment Cell Melanoma Res.
33
:
63
73
.
Scheiermann
,
C.
,
P.S.
Frenette
, and
A.
Hidalgo
.
2015
.
Regulation of leucocyte homeostasis in the circulation
.
Cardiovasc. Res.
107
:
340
351
.
Schimek
,
V.
,
K.
Strasser
,
A.
Beer
,
S.
Göber
,
N.
Walterskirchen
,
C.
Brostjan
,
C.
Müller
,
T.
Bachleitner-Hofmann
,
M.
Bergmann
,
H.
Dolznig
, and
R.
Oehler
.
2022
.
Tumour cell apoptosis modulates the colorectal cancer immune microenvironment via interleukin-8-dependent neutrophil recruitment
.
Cell Death Dis.
13
:
113
.
Schmaier
,
A.H.
, and
E.X.
Stavrou
.
2019
.
Factor XII – what’s important but not commonly thought about
.
Res. Pract. Thromb. Haemost.
3
:
599
606
.
Schmidt
,
H.
,
L.
Bastholt
,
P.
Geertsen
,
I.J.
Christensen
,
S.
Larsen
,
J.
Gehl
, and
H.
Von Der Maase
.
2005
.
Elevated neutrophil and monocyte counts in peripheral blood are associated with poor survival in patients with metastatic melanoma: A prognostic model
.
Br. J. Cancer
.
93
:
273
278
.
Schumski
,
A.
,
A.
Ortega-Gómez
,
K.
Wichapong
,
C.
Winter
,
P.
Lemnitzer
,
J.R.
Viola
,
M.
Pinilla-Vera
,
E.
Folco
,
V.
Solis-Mezarino
,
M.
Völker-Albert
, et al
.
2021
.
Endotoxinemia accelerates atherosclerosis through electrostatic charge-mediated monocyte adhesion
.
Circulation
.
143
:
254
266
.
Semerad
,
C.L.
,
M.J.
Christopher
,
F.
Liu
,
B.
Short
,
P.J.
Simmons
,
I.
Winkler
,
J.-P.
Levesque
,
J.
Chappel
,
F.P.
Ross
, and
D.C.
Link
.
2005
.
G-CSF potently inhibits osteoblast activity and CXCL12 mRNA expression in the bone marrow
.
Blood
.
106
:
3020
3027
.
Shah
,
A.D.
,
S.
Denaxas
,
O.
Nicholas
,
A.D.
Hingorani
, and
H.
Hemingway
.
2017
.
Neutrophil counts and initial presentation of 12 cardiovascular diseases: A caliber cohort study
.
J. Am. Coll. Cardiol.
69
:
1160
1169
.
Shen
,
M.
,
P.
Hu
,
F.
Donskov
,
G.
Wang
,
Q.
Liu
, and
J.
Du
.
2014
.
Tumor-associated neutrophils as a new prognostic factor in cancer: A systematic review and meta-analysis
.
PLoS One
.
9
:e98259.
Shojaei
,
F.
,
X.
Wu
,
C.
Zhong
,
L.
Yu
,
X.-H.
Liang
,
J.
Yao
,
D.
Blanchard
,
C.
Bais
,
F.V.
Peale
,
N.
Van Bruggen
, et al
.
2007
.
Bv8 regulates myeloid-cell-dependent tumour angiogenesis
.
Nature
.
450
:
825
831
.
Silverstein
,
R.L.
, and
R.L.
Nachman
.
1992
.
Cancer and clotting — Trousseau’s warning
.
N. Engl. J. Med.
327
:
1163
1164
.
Silvestre-Roig
,
C.
,
Q.
Braster
,
K.
Wichapong
,
E.Y.
Lee
,
J.M.
Teulon
,
N.
Berrebeh
,
J.
Winter
,
J.M.
Adrover
,
G.S.
Santos
,
A.
Froese
, et al
.
2019
.
Externalized histone H4 orchestrates chronic inflammation by inducing lytic cell death
.
Nature
.
569
:
236
240
.
Silvestre-Roig
,
C.
,
Q.
Braster
,
A.
Ortega-Gomez
, and
O.
Soehnlein
.
2020
.
Neutrophils as regulators of cardiovascular inflammation
.
Nat. Rev. Cardiol.
17
:
327
340
.
Singhal
,
S.
,
P.S.
Bhojnagarwala
,
S.
O’Brien
,
E.K.
Moon
,
A.L.
Garfall
,
A.S.
Rao
,
J.G.
Quatromoni
,
T.L.
Stephen
,
L.
Litzky
,
C.
Deshpande
, et al
.
2016
.
Origin and role of a subset of tumor-associated neutrophils with antigen-presenting cell features in early-stage human lung cancer
.
Cancer Cell
.
30
:
120
135
.
Soehnlein
,
O.
.
2012
.
Multiple roles for neutrophils in atherosclerosis
.
Circ. Res.
110
:
875
888
.
Soehnlein
,
O.
,
L.
Lindbom
, and
C.
Weber
.
2009
.
Mechanisms underlying neutrophil-mediated monocyte recruitment
.
Blood
.
114
:
4613
4623
.
Spiegel
,
A.
,
M.W.
Brooks
,
S.
Houshyar
,
F.
Reinhardt
,
M.
Ardolino
,
E.
Fessler
,
M.B.
Chen
,
J.A.
Krall
,
J.
DeCock
,
I.K.
Zervantonakis
, et al
.
2016
.
Neutrophils suppress intraluminal NK cell–mediated tumor cell clearance and enhance extravasation of disseminated carcinoma cells
.
Cancer Discov.
6
:
630
649
.
Šrámek
,
V.
,
B.
Melichar
,
J.
Indráková
,
H.
Študentová
,
H.
Kalábová
,
D.
Vrána
,
L.
Lukešová
,
T.
Adam
,
E.
Hlídková
,
J.
Juráňová
, et al
.
2013
.
Risk factors of atherosclerosis in patients with history of breast cancer
.
Pteridines
.
24
:
201
210
.
Sreejit
,
G.
,
A.
Abdel-Latif
,
B.
Athmanathan
,
R.
Annabathula
,
A.
Dhyani
,
S.K.
Noothi
,
G.A.
Quaife-Ryan
,
A.
Al-Sharea
,
G.
Pernes
,
D.
Dragoljevic
, et al
.
2020
.
Neutrophil-derived S100A8/A9 amplify granulopoiesis after myocardial infarction
.
Circulation
.
141
:
1080
1094
.
Sreeramkumar
,
V.
,
J.M.
Adrover
,
I.
Ballesteros
,
M.I.
Cuartero
,
J.
Rossaint
,
I.
Bilbao
,
M.
Nácher
,
C.
Pitaval
,
I.
Radovanovic
,
Y.
Fukui
, et al
.
2014
.
Neutrophils scan for activated platelets to initiate inflammation
.
Science
.
346
:
1234
1238
.
Stark
,
K.
, and
S.
Massberg
.
2021
.
Interplay between inflammation and thrombosis in cardiovascular pathology
.
Nat. Rev. Cardiol.
18
:
666
682
.
Stewart
,
G.J.
1993
.
Neutrophils and deep venous thrombosis
.
Haemostasis
.
23
:
127
140
.
Sturgeon
,
K.M.
,
L.
Deng
,
S.M.
Bluethmann
,
S.
Zhou
,
D.M.
Trifiletti
,
C.
Jiang
,
S.P.
Kelly
, and
N.G.
Zaorsky
.
2019
.
A population-based study of cardiovascular disease mortality risk in US cancer patients
.
Eur. Heart J.
40
:
3889
3897
.
Swanton
,
C.
,
E.
Bernard
,
C.
Abbosh
,
F.
André
,
J.
Auwerx
,
A.
Balmain
,
D.
Bar-Sagi
,
R.
Bernards
,
S.
Bullman
,
J.
DeGregori
, et al
.
2024
.
Embracing cancer complexity: Hallmarks of systemic disease
.
Cell
.
187
:
1589
1616
.
Sylman
,
J.L.
,
A.
Mitrugno
,
G.W.
Tormoen
,
T.H.
Wagner
,
P.
Mallick
, and
O.J.T.
McCarty
.
2017
.
Platelet count as a predictor of metastasis and venous thromboembolism in patients with cancer
.
Converg. Sci. Phys. Oncol.
3
:
023001
.
Szczerba
,
B.M.
,
F.
Castro-Giner
,
M.
Vetter
,
I.
Krol
,
S.
Gkountela
,
J.
Landin
,
M.C.
Scheidmann
,
C.
Donato
,
R.
Scherrer
,
J.
Singer
, et al
.
2019
.
Neutrophils escort circulating tumour cells to enable cell cycle progression
.
Nature
.
566
:
553
557
.
Tabarkiewicz
,
J.
,
P.
Rybojad
,
A.
Jablonka
, and
J.
Rolinski
.
2008
.
CD1c+ and CD303+ dendritic cells in peripheral blood, lymph nodes and tumor tissue of patients with non-small cell lung cancer
.
Oncol. Rep.
19
:
237
243
.
Taccone
,
F.S.
,
S.M.
Jeangette
, and
S.A.
Blecic
.
2008
.
First-ever stroke as initial presentation of systemic cancer
.
J. Stroke Cerebrovasc. Dis.
17
:
169
174
.
Tanaka
,
S.
,
W.
Ise
,
T.
Inoue
,
A.
Ito
,
C.
Ono
,
Y.
Shima
,
S.
Sakakibara
,
M.
Nakayama
,
K.
Fujii
,
I.
Miura
, et al
.
2020
.
Tet2 and Tet3 in B cells are required to repress CD86 and prevent autoimmunity
.
Nat. Immunol.
21
:
950
961
.
Tang
,
Z.
,
J.
Hu
,
X.-C.
Li
,
W.
Wang
,
H.-Y.
Zhang
,
Y.-Y.
Guo
,
X.
Shuai
,
Q.
Chu
,
C.
Xie
,
D.
Lin
, and
B.
Zhong
.
2025
.
A subset of neutrophils activates anti-tumor immunity and inhibits non-small-cell lung cancer progression
.
Dev. Cell
.
60
:
379
395.e8
.
Teijeira
,
Á.
,
S.
Garasa
,
M.
Gato
,
C.
Alfaro
,
I.
Migueliz
,
A.
Cirella
,
C.
de Andrea
,
M.C.
Ochoa
,
I.
Otano
,
I.
Etxeberria
, et al
.
2020
.
CXCR1 and CXCR2 chemokine receptor agonists produced by tumors induce neutrophil extracellular traps that interfere with immune cytotoxicity
.
Immunity
.
52
:
856
871.e8
.
Teijeira
,
A.
,
S.
Garasa
,
M.C.
Ochoa
,
M.
Villalba
,
I.
Olivera
,
A.
Cirella
,
I.
Eguren-Santamaria
,
P.
Berraondo
,
K.A.
Schalper
,
C.E.
De Andrea
, et al
.
2021
.
IL8, neutrophils, and NETs in a collusion against cancer immunity and immunotherapy
.
Clin. Cancer Res.
27
:
2383
2393
.
Templeton
,
A.J.
,
M.G.
McNamara
,
B.
Šeruga
,
F.E.
Vera-Badillo
,
P.
Aneja
,
A.
Ocaña
,
R.
Leibowitz-Amit
,
G.
Sonpavde
,
J.J.
Knox
,
B.
Tran
, et al
.
2014
.
Prognostic role of neutrophil-to-Lymphocyte ratio in solid tumors: A systematic review and meta-analysis
.
J. Natl. Cancer Inst.
106
:
dju124
.
Thålin
,
C.
,
Y.
Hisada
,
S.
Lundström
,
N.
Mackman
, and
H.
Wallén
.
2019
.
Neutrophil extracellular traps: Villains and targets in arterial, venous, and cancer-associated thrombosis
.
Arterioscler. Thromb. Vasc. Biol.
39
:
1724
1738
.
Thewissen
,
M.
,
J.
Damoiseaux
,
J.
Van De Gaar
, and
J.W.C.
Tervaert
.
2011
.
Neutrophils and T cells: Bidirectional effects and functional interferences
.
Mol. Immunol.
48
:
2094
2101
.
Thygesen
,
K.
,
J.S.
Alpert
,
H.D.
White
,
TASK FORCE MEMBERS
,
A.S.
Jaffe
,
F.S.
Apple
,
M.
Galvani
,
H.A.
Katus
,
L.K.
Newby
,
P.M.
Clemmensen
, et al
.
2007
.
Universal definition of myocardial infarction
.
Circulation
.
116
:
2634
2653
.
Tillack
,
K.
,
P.
Breiden
,
R.
Martin
, and
M.
Sospedra
.
2012
.
T lymphocyte priming by neutrophil extracellular traps links innate and adaptive immune responses
.
J. Immunol.
188
:
3150
3159
.
Timp
,
J.F.
,
S.K.
Braekkan
,
H.H.
Versteeg
, and
S.C.
Cannegieter
.
2013
.
Epidemiology of cancer-associated venous thrombosis
.
Blood
.
122
:
1712
1723
.
Todorović-Raković
,
N.
, and
J.
Milovanović
.
2013
.
Interleukin-8 in breast cancer progression
.
J. Interferon Cytokine Res.
33
:
563
570
.
Urban
,
C.F.
,
D.
Ermert
,
M.
Schmid
,
U.
Abu-Abed
,
C.
Goosmann
,
W.
Nacken
,
V.
Brinkmann
,
P.R.
Jungblut
, and
A.
Zychlinsky
.
2009
.
Neutrophil extracellular traps contain calprotectin, a cytosolic protein complex involved in host defense against Candida albicans
.
PLoS Pathog.
5
:e1000639.
Vafadarnejad
,
E.
,
G.
Rizzo
,
L.
Krampert
,
P.
Arampatzi
,
A.-P.
Arias-Loza
,
Y.
Nazzal
,
A.
Rizakou
,
T.
Knochenhauer
,
S.R.
Bandi
,
V.A.
Nugroho
, et al
.
2020
.
Dynamics of cardiac neutrophil diversity in murine myocardial infarction
.
Circ. Res.
127
:
e232
e249
.
Van Aken
,
B.E.
,
P.H.
Reitsma
, and
F.R.
Rosendaal
.
2002
.
Interleukin 8 and venous thrombosis: Evidence for a role of inflammation in thrombosis
.
Br. J. Haematol.
116
:
173
177
.
van Es
,
N.
,
S.M.
Bleker
, and
M.
Di Nisio
.
2014
.
Cancer-associated unsuspected pulmonary embolism
.
Thromb. Res.
133
:
S172
S178
.
Veglia
,
F.
,
A.
Hashimoto
,
H.
Dweep
,
E.
Sanseviero
,
A.
De Leo
,
E.
Tcyganov
,
A.
Kossenkov
,
C.
Mulligan
,
B.
Nam
,
G.
Masters
, et al
.
2021
.
Analysis of classical neutrophils and polymorphonuclear myeloid-derived suppressor cells in cancer patients and tumor-bearing mice
.
J. Exp. Med.
218
:e20201803.
Vicanolo
,
T.
,
A.
Özcan
,
J.L.
Li
,
C.
Huerta-López
,
I.
Ballesteros
,
A.
Rubio-Ponce
,
A.C.
Dumitru
,
J.Á.
Nicolás-Ávila
,
M.
Molina-Moreno
,
P.
Reyes-Gutierrez
, et al
.
2025
.
Matrix-producing neutrophils populate and shield the skin
.
Nature
.
641
:
740
748
.
von Brühl
,
M.-L.
,
K.
Stark
,
A.
Steinhart
,
S.
Chandraratne
,
I.
Konrad
,
M.
Lorenz
,
A.
Khandoga
,
A.
Tirniceriu
,
R.
Coletti
,
M.
Köllnberger
, et al
.
2012
.
Monocytes, neutrophils, and platelets cooperate to initiate and propagate venous thrombosis in mice in vivo
.
J. Exp. Med.
209
:
819
835
.
Von Hoff
,
D.D.
,
M.W.
Layard
,
P.
Basa
,
H.L.
Davis
,
A.L.
Von Hoff
,
M.
Rozencweig
, and
F.M.
Muggia
.
1979
.
Risk factors for doxorubicin-induced congestive heart failure
.
Ann. Intern. Med.
91
:
710
717
.
Von Itter
,
R.
, and
K.J.
Moore
.
2024
.
Cross-disease communication in cardiovascular disease and cancer
.
JACC. Cardiooncol.
6
:
67
70
.
Wang
,
T.T.
,
Y.L.
Zhao
,
L.S.
Peng
,
N.
Chen
,
W.
Chen
,
Y.P.
Lv
,
F.Y.
Mao
,
J.Y.
Zhang
,
P.
Cheng
,
Y.S.
Teng
, et al
.
2017
.
Tumour-activated neutrophils in gastric cancer foster immune suppression and disease progression through GM-CSF-PD-L1 pathway
.
Gut
.
66
:
1900
1911
.
Wang
,
S.C.
,
J.
Schulman-Marcus
,
J.
Fantauzzi
,
T.
Bevington
,
A.
Sayegh
,
E.
Lee
,
A.
Ata
,
M.
Kambam
,
M.
Sidhu
, and
R.
Lyubarova
.
2019
.
Colon cancer laterality is associated with atherosclerosis and coronary artery disease
.
J. Gastrointest. Oncol.
10
:
30
36
.
Wang
,
H.
,
H.
Zhang
,
Y.
Wang
,
Z.J.
Brown
,
Y.
Xia
,
Z.
Huang
,
C.
Shen
,
Z.
Hu
,
J.
Beane
,
E.A.
Ansa-Addo
, et al
.
2021a
.
Regulatory T-cell and neutrophil extracellular trap interaction contributes to carcinogenesis in non-alcoholic steatohepatitis
.
J. Hepatol.
75
:
1271
1283
.
Wang
,
J.
,
Y.D.
Kim
, and
C.H.
Kim
.
2021b
.
Incidence and risk of various types of arterial thromboembolism in patients with cancer
.
Mayo Clin. Proc.
96
:
592
600
.
Warnatsch
,
A.
,
M.
Ioannou
,
Q.
Wang
, and
V.
Papayannopoulos
.
2002
.
Neutrophil extracellular traps license macrophages for cytokine production in atherosclerosis
.
Science
.
2
:
316
320
.
Waugh
,
D.J.J.
, and
C.
Wilson
.
2008
.
The interleukin-8 pathway in cancer
.
Clin. Cancer Res.
14
:
6735
6741
.
Wculek
,
S.K.
, and
I.
Malanchi
.
2015
.
Neutrophils support lung colonization of metastasis-initiating breast cancer cells
.
Nature
.
528
:
413
417
.
Wculek
,
S.K.
,
V.L.
Bridgeman
,
F.
Peakman
, and
I.
Malanchi
.
2020
.
Early neutrophil responses to chemical carcinogenesis shape long-term lung cancer susceptibility
.
iScience
.
23
:
101277
.
Weeks
,
L.D.
, and
B.L.
Ebert
.
2023
.
Causes and consequences of clonal hematopoiesis
.
Blood
.
142
:
2235
2246
.
Weitberg
,
A.B.
,
S.A.
Weitzman
,
M.
Destrempes
,
S.A.
Latt
, and
T.P.
Stossel
.
1983
.
Stimulated human phagocytes produce cytogenetic changes in cultured mammalian cells
.
N. Engl. J. Med.
308
:
26
30
.
Weitzman
,
S.A.
, and
T.P.
Stossel
.
1981
.
Mutation caused by human phagocytes
.
Science
.
212
:
546
547
.
Weitzman
,
S.A.
,
A.B.
Weitberg
,
E.P.
Clark
, and
T.P.
Stossel
.
1985
.
Phagocytes as carcinogens: Malignant transformation produced by human neutrophils
.
Science
.
227
:
1231
1233
.
Winter
,
C.
,
C.
Silvestre-Roig
,
A.
Ortega-Gomez
,
P.
Lemnitzer
,
H.
Poelman
,
A.
Schumski
,
J.
Winter
,
M.
Drechsler
,
R.
De Jong
,
R.
Immler
, et al
.
2018
.
Chrono-pharmacological targeting of the CCL2-CCR2 axis ameliorates atherosclerosis
.
Cell Metab.
28
:
175
182.e5
.
Wolach
,
O.
,
R.S.
Sellar
,
K.
Martinod
,
D.
Cherpokova
,
M.
McConkey
,
R.J.
Chappell
,
A.J.
Silver
,
D.
Adams
,
C.A.
Castellano
,
R.K.
Schneider
, et al
.
2018
.
Increased neutrophil extracellular trap formation promotes thrombosis in myeloproliferative neoplasms
.
Sci. Transl. Med.
10
:eaan8292.
Wolf
,
A.M.
,
D.
Wolf
,
M.
Steurer
,
G.
Gastl
,
E.
Gunsilius
, and
B.
Grubeck-Loebenstein
.
2003
.
Increase of regulatory T cells in the peripheral blood of cancer patients
.
Clin. Cancer Res.
9
:
606
612
.
Wong
,
W.J.
,
C.
Emdin
,
A.G.
Bick
,
S.M.
Zekavat
,
A.
Niroula
,
J.P.
Pirruccello
,
L.
Dichtel
,
G.
Griffin
,
M.M.
Uddin
,
C.J.
Gibson
, et al
.
2023
.
Clonal haematopoiesis and risk of chronic liver disease
.
Nature
.
616
:
747
754
.
Wu
,
W.C.
,
H.W.
Sun
,
H.T.
Chen
,
J.
Liang
,
X.J.
Yu
,
C.
Wu
,
Z.
Wang
, and
L.
Zheng
.
2014
.
Circulating hematopoietic stem and progenitor cells are myeloid-biased in cancer patients
.
Proc. Natl. Acad. Sci. USA
.
111
:
4221
4226
.
Xia
,
Y.
,
J.
He
,
H.
Zhang
,
H.
Wang
,
G.
Tetz
,
C.A.
Maguire
,
Y.
Wang
,
A.
Onuma
,
D.
Genkin
,
V.
Tetz
, et al
.
2020
.
AAV-mediated gene transfer of DNase I in the liver of mice with colorectal cancer reduces liver metastasis and restores local innate and adaptive immune response
.
Mol. Oncol.
14
:
2920
2935
.
Xiao
,
Y.
,
M.
Cong
,
J.
Li
,
D.
He
,
Q.
Wu
,
P.
Tian
,
Y.
Wang
,
S.
Yang
,
C.
Liang
,
Y.
Liang
, et al
.
2021
.
Cathepsin C promotes breast cancer lung metastasis by modulating neutrophil infiltration and neutrophil extracellular trap formation
.
Cancer Cell
.
39
:
423
437.e7
.
Xie
,
W.
,
S.
Hsu
,
Y.
Lin
,
L.
Xie
,
X.
Jin
,
Z.
Zhu
,
Y.
Guo
,
C.
Chen
,
D.
Huang
,
J.
Boltze
, and
P.
Li
.
2024
.
Malignancy‐associated ischemic stroke: Implications for diagnostic and therapeutic workup
.
CNS Neurosci. Ther.
30
:e14619.
Yajuk
,
O.
,
M.
Baron
,
S.
Toker
,
T.
Zelter
,
T.
Fainsod-Levi
, and
Z.
Granot
.
2021
.
The PD-L1/PD-1 axis blocks neutrophil cytotoxicity in cancer
.
Cells
.
10
:
1510
.
Yan
,
B.
,
J.-J.
Wei
,
Y.
Yuan
,
R.
Sun
,
D.
Li
,
J.
Luo
,
S.-J.
Liao
,
Y.-H.
Zhou
,
Y.
Shu
,
Q.
Wang
, et al
.
2013
.
IL-6 cooperates with G-CSF to induce protumor function of neutrophils in bone marrow by enhancing STAT3 activation
.
J. Immunol.
190
:
5882
5893
.
Yang
,
L.
,
Q.
Liu
,
X.
Zhang
,
X.
Liu
,
B.
Zhou
,
J.
Chen
,
D.
Huang
,
J.
Li
,
H.
Li
,
F.
Chen
, et al
.
2020
.
DNA of neutrophil extracellular traps promotes cancer metastasis via CCDC25
.
Nature
.
583
:
133
138
.
Yang
,
C.
,
Z.
Wang
,
L.
Li
,
Z.
Zhang
,
X.
Jin
,
P.
Wu
,
S.
Sun
,
J.
Pan
,
K.
Su
,
F.
Jia
, et al
.
2021
.
Aged neutrophils form mitochondria-dependent vital NETs to promote breast cancer lung metastasis
.
J. Immunother. Cancer
.
9
:e002875.
Yazdani
,
H.O.
,
E.
Roy
,
A.J.
Comerci
,
D.J.
van der Windt
,
H.
Zhang
,
H.
Huang
,
P.
Loughran
,
S.
Shiva
,
D.A.
Geller
,
D.L.
Bartlett
, et al
.
2019
.
Neutrophil extracellular traps drive mitochondrial homeostasis in tumors to augment growth
.
Cancer Res.
79
:
5626
5639
.
Yin
,
Y.
,
H.
Dai
,
X.
Sun
,
Z.
Xi
,
J.
Zhang
,
Y.
Pan
,
Y.
Huang
,
X.
Ma
,
Q.
Xia
, and
K.
He
.
2023
.
HRG inhibits liver cancer lung metastasis by suppressing neutrophil extracellular trap formation
.
Clin. Transl. Med.
13
:e1283.
Yu
,
Y.
,
R.-R.
Wang
,
N.-J.
Miao
,
J.-J.
Tang
,
Y.-W.
Zhang
,
X.-R.
Lu
,
P.-Y.
Yan
,
J.
Wang
, and
X.-M.
Jia
.
2022
.
PD-L1 negatively regulates antifungal immunity by inhibiting neutrophil release from bone marrow
.
Nat. Commun.
13
:
6857
.
Yu
,
X.
,
C.
Li
,
Z.
Wang
,
Y.
Xu
,
S.
Shao
,
F.
Shao
,
H.
Wang
, and
J.
Liu
.
2024
.
Neutrophils in cancer: Dual roles through intercellular interactions
.
Oncogene
.
43
:
1163
1177
.
Yuan
,
M.
, and
Q.-G.
Li
.
2018
.
Lung cancer and risk of cardiovascular disease: A meta-analysis of cohort studies
.
J. Cardiothorac. Vasc. Anesth.
32
:
e25
e27
.
Yura
,
Y.
,
E.
Miura-Yura
,
Y.
Katanasaka
,
K.-D.
Min
,
N.
Chavkin
,
A.H.
Polizio
,
H.
Ogawa
,
K.
Horitani
,
H.
Doviak
,
M.A.
Evans
, et al
.
2021
.
The cancer therapy-related clonal hematopoiesis driver gene ppm1d promotes inflammation and non-ischemic heart failure in mice
.
Circ. Res.
129
:
684
698
.
Zaorsky
,
N.G.
,
Y.
Zhang
,
L.T.
Tchelebi
,
H.B.
Mackley
,
V.M.
Chinchilli
, and
B.E.
Zacharia
.
2019
.
Stroke among cancer patients
.
Nat. Commun.
10
:
5172
.
Zekavat
,
S.M.
,
S.-H.
Lin
,
A.G.
Bick
,
A.
Liu
,
K.
Paruchuri
,
C.
Wang
,
M.M.
Uddin
,
Y.
Ye
,
Z.
Yu
,
X.
Liu
, et al
.
2021
.
Hematopoietic mosaic chromosomal alterations increase the risk for diverse types of infection
.
Nat. Med.
27
:
1012
1024
.
Zhan
,
L.
,
Y.
Liu
,
Y.
Cheng
,
W.
Guo
, and
J.
Yang
.
2021
.
Predictive value of neutrophil/lymphocyte ratio (NLR) on cardiovascular events in patients with COVID-19
.
Int. J. Gen. Med.
14
:
3899
3907
.
Zhang
,
Y.
,
C.
Wang
,
M.
Yu
,
X.
Zhao
,
J.
Du
,
Y.
Li
,
H.
Jing
,
Z.
Dong
,
J.
Kou
,
Y.
Bi
, et al
.
2019
.
Neutrophil extracellular traps induced by activated platelets contribute to procoagulant activity in patients with colorectal cancer
.
Thromb. Res.
180
:
87
97
.
Zhang
,
N.
,
G.
Tse
, and
T.
Liu
.
2021
.
Neutrophil–lymphocyte ratio in the immune checkpoint inhibitors-related atherosclerosis
.
Eur. Heart J.
42
:
2215
.
Zhang
,
N.
,
X.
Aiyasiding
,
W.J.
Li
,
H.H.
Liao
, and
Q.Z.
Tang
.
2022
.
Neutrophil degranulation and myocardial infarction
.
Cell Commun. Signal.
20
:
50
.
Zhou
,
S.-L.
,
Z.-J.
Zhou
,
Z.-Q.
Hu
,
X.-W.
Huang
,
Z.
Wang
,
E.-B.
Chen
,
J.
Fan
,
Y.
Cao
,
Z.
Dai
, and
J.
Zhou
.
2016
.
Tumor-associated neutrophils recruit macrophages and t-regulatory cells to promote progression of hepatocellular carcinoma and resistance to sorafenib
.
Gastroenterology
.
150
:
1646
1658.e17
.
Zhu
,
Y.P.
,
L.
Padgett
,
H.Q.
Dinh
,
P.
Marcovecchio
,
A.
Blatchley
,
R.
Wu
,
E.
Ehinger
,
C.
Kim
,
Z.
Mikulski
,
G.
Seumois
, et al
.
2018
.
Identification of an early unipotent neutrophil progenitor with pro-tumoral activity in mouse and human bone marrow
.
Cell Rep.
24
:
2329
2341.e8
.
Zink
,
F.
,
S.N.
Stacey
,
G.L.
Norddahl
,
M.L.
Frigge
,
O.T.
Magnusson
,
I.
Jonsdottir
,
T.E.
Thorgeirsson
,
A.
Sigurdsson
,
S.A.
Gudjonsson
,
J.
Gudmundsson
, et al
.
2017
.
Clonal hematopoiesis, with and without candidate driver mutations, is common in the elderly
.
Blood
.
130
:
742
752
.
Zittermann
,
S.I.
, and
A.C.
Issekutz
.
2006
.
Endothelial growth factors VEGF and bFGF differentially enhance monocyte and neutrophil recruitment to inflammation
.
J. Leukoc. Biol.
80
:
247
257
.
Zwicker
,
J.I.
,
H.A.
Liebman
,
D.
Neuberg
,
R.
Lacroix
,
K.A.
Bauer
,
B.C.
Furie
, and
B.
Furie
.
2009
.
Tumor-derived tissue factorbearing microparticles are associated with venous thromboembolic events in malignancy
.
Clin. Cancer Res.
15
:
6830
6840
.

Author notes

Disclosures: The authors declare no competing interests exist.

This article is distributed under the terms as described at https://rupress.org/pages/terms102024/.