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Heart of the matter: Neutrophils, cancer, and

cardiovascular disease

Saira Ambreen'@®, Afshan McCarthy'@®, Andrés Hidalgo?®, and Jose M. Adrover'®

Cancer and cardiovascular disease together are leading causes of death worldwide, and cancer patients display an abnormally
elevated burden of cardiovascular disease. Neutrophils—key immune cells known primarily by their roles in inflammation and
infection—can link these two pathological conditions. Neutrophils contribute to cancer progression and cardiovascular
complications through various mechanisms, including their ability to promote inflammation, thrombosis, and vascular damage
by interacting with vascular endothelial cells, platelets, and other immune cells, or by forming NETs. In cancer, neutrophils
contribute to a hypercoagulability state, which promotes tumor growth and metastasis, and can also lead to thrombotic
events, myocardial infarction, and stroke. Cancer affects neutrophil numbers and functional properties, induces the
appearance of several neutrophil subtypes, and can alter hematopoiesis. Here we summarize the links between cancer and
cardiovascular disease, focusing on the role of neutrophils and cancer-elicited changes to their function in connecting these
two disease states and highlighting the neutrophils’ dynamic interaction with both diseases.

Introduction

Cancer and cardiovascular disease (CVD) are the second and first
causes of death, respectively (Heron, 2021). Many risk factors
are shared between the two, including smoking, obesity, low
physical activity, high-fat diet, chronic inflammation, hyper-
tension, or clonal hematopoiesis (CH) (Handy et al., 2018), and
numerous clinical reports show a correlation between cancer
and CVD. For instance, lung cancer patients have a 90% increase
in the risk of coronary artery disease and over a 66% increased
risk of overall CVD compared with the general population
(Kravchenko et al., 2015; Yuan and Li, 2018). Acute cardiovas-
cular events are, thus, common drivers of cancer patient mor-
tality (Boire et al., 2024).

Cancer treatment is a prime suspect for the disproportionate
burden of CVD in cancer patients. Stemming from seminal
studies on the cardiotoxic effect of anthracyclines (Von Hoff
et al.,, 1979), many different approaches used for cancer ther-
apy have now been shown to be detrimental for the cardiovas-
cular system (Chung et al., 2018; De Keulenaer et al., 2010;
Jaworski et al., 2013; Cheng and Force, 2010), leading to the es-
tablishment of a new cardio-oncology discipline and practice
(Cubbon and Lyon, 2016; Pareek et al., 2018). Importantly,
however, treatment-naive cancer patients are also at higher risk
of CVD compared with the general population (Bradshaw et al.,
2016; Cramer et al., 2014; Pavo et al., 2015), suggesting that
treatment-independent effects are also at play. These treatment-

independent effects are related to cancer-imposed changes to
its host macroenvironment. Of those, changes to the immune
compartment are well documented (Hiam-Galvez et al., 2021)
and likely to contribute to cancer-driven CVD.

Neutrophils are the first line of defense of the organism, can
rapidly migrate to inflamed sites, and exert several effector
functions to deal with tissue injury. These effector functions
include phagocytosis, production of high amounts of ROS, re-
lease of the cytotoxic content of their granules (Borregaard et al.,
2007), or neutrophil extracellular trap (NETs) formation
(Brinkmann et al., 2004; Papayannopoulos, 2018; Hidalgo et al.,
2022). Neutrophils are prominently involved in CVD (Haumer
et al., 2005; Shah et al., 2017; Silvestre-Roig et al., 2020; Luo
et al., 2023; Morrissey et al., 2025). Their transcriptional pro-
file and function can be modulated in the steady state by cell-
intrinsic, systemic, or tissue-specific cues (Adrover et al., 2019;
Casanova-Acebes et al., 2018; Ballesteros et al., 2020; Adrover
et al., 2020), as well as by disease states. Cancer, in particular,
significantly influences neutrophil properties, with both pro-
tumorigenic and anti-tumorigenic neutrophil subpopulations
described in different cancer contexts (Ng et al., 2025).

Traditionally, cancer research has focused on genetic alter-
ations of the cancerous cells themselves, only to later acknowl-
edge the critical role of the microenvironment where these
cells reside (Koliaraki et al., 2020). Current research, how-
ever, has begun to pay more attention to the whole-body
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“macroenvironment” (Swanton et al., 2024; Rabas et al., 2024),
as cancer cells induce not only local but also distant changes to
their host.

The realization that cancer elicits global changes to the host is
not new; in the 19t century, Armand Trousseau established that
cancer patients are at heightened risk of thrombosis and that
thromboembolic disease in an otherwise healthy individual was,
with a substantial likelihood, secondary to an occult malignancy
(Silverstein and Nachman, 1992). Since then, many observations
suggest that cancer is a systemic disease and that the tumor
macroenvironment is a key driver of cancer progression.

Although tumor immunologists have classically focused on
the local immune response at the tumor site, the immune system
is deeply coordinated across whole-body physiology. Inflam-
mation is a hallmark of cancer, and the immune system is the
system that is most directly and profoundly affected by it
(Coussens and Werb, 2002). Many immune system compart-
ments, both adaptive and innate, are affected by growing tumors
(Allen et al., 2020): immature monocytes are released early into
the circulation and can become immunosuppressive, while
dendritic cells, which are key orchestrators of adaptive immu-
nity (Cabeza-Cabrerizo et al., 2021), are reduced in number and
defective in many human cancers and mouse models (Almand
etal., 2001; Bella et al., 2003; Tabarkiewicz et al., 2008; Lin et al.,
2020). Macrophages acquire anti-inflammatory programs, and
many of their functions are co-opted by growing tumors
(Kloosterman and Akkari, 2023), and natural killer cells
are progressively dysfunctional during cancer progression
(Mamessier et al., 2011). A reduced number of T cells is a
common phenomenon in several types of cancer (Ray-Coquard
et al., 2009), and the remaining cells can show a reduced TCR
repertoire, which is associated with reduced anti-tumor ac-
tivity (Manuel et al., 2012; Liu et al., 2019b). Interestingly, the
number of regulatory T cells (Liyanage et al., 2002; Wolf et al.,
2003) and regulatory B cells (Murakami et al., 2019) is increased
in cancer patients. Thus, while the rest of this review will focus
on neutrophils, cancer affects the immune system profoundly
and systemically beyond the local microenvironment.

Neutrophils in cancer

Neutrophils are vastly affected by cancer (Quail et al., 2022;
Maas et al., 2023; Adrover et al., 2023; Ng et al., 2025) and
represent the most adverse prognostic cell type in pan-cancer
studies (Gentles et al., 2015; Templeton et al., 2014). Neutrophils
originate from hematopoietic stem cells in the bone marrow,
through common myeloid progenitors, granulocyte-monocyte
progenitors, and recently described unipotent neutrophil pro-
genitors (Zhu et al., 2018; Kwok et al., 2020; Evrard et al., 2018).
Neutrophil production is controlled by an array of transcription
factors (Lawrence et al., 2018), including purine-rich box 1
(PU.1), CCAAT/enhancer-binding protein alpha, beta, and epsi-
lon (C/EBPBo, C/EBPBB, and C/EBPBe), growth factor indepen-
dent 1 (Gfi-1), and GATA-binding factor 1 (GATA-1). Before
exiting to the bloodstream, neutrophils spend up to 6 days in the
bone marrow (Dancey et al., 1976) under control of antagonistic
chemokine signaling between the pro-mobilizing CXC motif
chemokine receptor 2 (CXCR2) and the pro-retention CXC motif
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chemokine receptor 4 (CXCR4) (Eash et al., 2010; Martin et al.,
2003).

Neutrophils are short-lived (Dancey et al., 1976; Hidalgo et al.,
2019; Adrover et al., 2019, 2020), but at the same time, they are
the most abundant immune cell in the human circulation. Not
surprisingly, the hematopoietic system devotes two-thirds of its
resources just to replenish neutrophils (Borregaard, 2010), and
this has been estimated to involve the production of ~2 x 10!
neutrophils each day (Kolaczkowska and Kubes, 2013;
Scheiermann et al., 2015). Many factors that regulate neutrophil
life cycle are highly expressed by tumors, causing a dysregula-
tion of neutrophil maturation, lifespan, and effector functions in
cancer (Adrover et al., 2023). One such process altered in cancer
is the rate of neutrophil production in the bone marrow
compartment. Cancer patients display a myeloid skew of he-
matopoiesis and harbor an increased number of granulocyte-
monocyte progenitors (Wu et al., 2014). The same is true for
preclinical breast, skin, and pancreatic cancer models (Casbon
etal., 2015; Khaled et al., 2014; Kamran et al., 2018). This drives
a systemic alteration of neutrophil function, contributing
to tumor progression and cancer-associated thrombosis
(Demers et al., 2012). Hematopoietic progenitor cells can sense
and respond to peripheral inflammation cues (Chavakis et al.,
2019), and, in cancer, factors produced by a variety of cells
have been proposed to drive hematopoietic adaptation, in-
cluding granulocyte CSF (G-CSF) (Casbon et al., 2015), GM-
CSF (Almand et al., 2001; Morales et al., 2010), IL-17 (Coffelt
et al., 2015), IL-8 (Dominguez et al., 2017), TNFa (Al Sayed
et al.,, 2019), IL-1B (Aggen et al., 2021), Receptor for ad-
vanced glycation endproducts (Engblom et al., 2017), and
cancer cell-derived exosomes (Peinado et al., 2012). How all
these pieces coordinate is still unclear but, nonetheless, the
altered hematopoietic output leads to changes in the lym-
phoid/myeloid ratio, and together with the effect of various
other cancer cell- or tumor stromal cell-produced mediators
(a prime example of which is TGF-B [Fridlender et al., 2009]),
ultimately lead to the appearance of distinct neutrophil sub-
populations either systemically or within the tumor micro-
environment (TME).

Cancer-associated neutrophils exhibit a dual nature, capable
of both inhibiting and promoting tumor growth and metastasis.
This duality stems from their plasticity and responsiveness to
environmental cues systemically and within the TME (Baghban
et al., 2020). The TME is a local inflammatory microenviron-
ment comprising tumor cells, immune cells, endothelial and
stromal cells, as well as extracellular matrix components that
support tumor initiation, development, and metastasis (De
Visser and Joyce, 2023). Neutrophils are now considered to be
one of the major participants of the TME and have been shown to
make up a substantial proportion of the immune infiltrate in a
wide variety of cancer types, including non-small cell lung
cancer (Rakaee et al., 2016), renal cell carcinoma (Jensen et al.,
2009), colorectal cancer (Rao et al., 2012), breast cancer
(Lotfinejad et al., 2020), melanoma (Jensen et al., 2012), and
hepatocellular carcinoma (Li et al., 2011). These tumor-
associated neutrophils are typically associated with poor prog-
nosis (Shen et al., 2014; Gentles et al., 2015), but subpopulations
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Figure 1.

NETs
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Neutrophils in cancer. Neutrophils show both anti-tumoral (green lines) and pro-tumoral (red lines) properties that affect tumor progression in

opposite ways. Identified pro-tumoral and anti-tumoral neutrophil subsets are highlighted in the respective colored boxes. TRAIL, TNF-related apoptosis-
inducing ligand; VEGF, vascular endothelial growth factor; NE, neutrophil elastase.

with both pro- and anti-tumor functions have been described
and are outlined below.

The apparent conundrum of pro- and anti-tumoral neutro-
phil states (Fig. 1) may stem from the different ways in which
various cancer types affect neutrophil biology and respond to
neutrophil-driven signals. Indeed, neutrophils are not a homo-
geneous population, as once assumed, and many studies have
highlighted that neutrophils, despite their short lifespan, can
differentiate into different subpopulations that exert diverse
functions (Hedrick and Malanchi, 2022; Yu et al., 2024;
Ballesteros et al., 2020; Adrover et al., 2019; Casanova-Acebes
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et al., 2018; Nicolas-Avila et al., 2017). A recent example is that
neutrophils gain a matrix-producing phenotype upon TGF-f
stimulation and are able to actively deposit collagen fibers
(Vicanolo et al., 2025). Studies in the last decade have started to
unravel this neutrophil heterogeneity and have led to new
frameworks for neutrophil adaptation (Ng et al., 2019, 2025).
Early reports showed that neutrophils can adapt and change
in the TME and proposed a skew from an anti-tumorigenic “N1”
to a pro-tumorigenic “N2” phenotype of neutrophils driven by
TGF-B signaling in cancer (Fridlender et al., 2009). N1 neu-
trophils enhance cytotoxic T cell recruitment and activation by

Journal of Experimental Medicine
https://doi.org/10.1084/jem.20242402

920z Areniged 60 uo 1senb Aq jpd-zZ0vzrz0Z Wel/0z98Y61/20v2¥2029/6/22Z/4Ppd-ajoe/wal/bio ssaidny//:dpy woy papeojumoq

30f 20



secreting chemokines (e.g., CXCL9 and CXCL10) and cytokines
(e.g., IL-12, TNFa, and GM-CSF) (Fridlender et al., 2009). Con-
versely, N2 neutrophils suppress cytotoxic T cells and recruit
regulatory T cells, leading to immune tolerance and tumor
progression (Mishalian et al., 2014).

Other reports indicated that neutrophils change systemically
as well as within the TME with cancer progression, with a sys-
temic accumulation of immunosuppressive neutrophils (Sagiv
et al., 2015). Cytokines like G-CSF and IL-6 modulate neutrophil
phenotypes in the bone marrow, driving pro-tumoral neutrophil
behaviors (Yan et al.,, 2013). Furthermore, we have recently
shown that cancer can remotely affect the bone marrow to in-
duce a myeloid skew of hematopoiesis and induce the appear-
ance of a subpopulation of vascular-restricted neutrophils
(vrPMNs). vrPMNs do not extravasate toward inflammatory
insults but are highly reactive inside the vasculature, form NETs
more efficiently, and interact more with platelets. We show that
neutrophils block the blood flow in the tumor vasculature in a
NET-dependent manner, causing tumor necrosis, which in turn
enhances metastatic spread (Adrover et al., 2025).

Neutrophil phenotypes also seem to change in the TME,
where a population of CD14*-immunosuppressive neutrophils
was identified (Veglia et al., 2021). A population of SiglecFHigh
neutrophils stemming from tumor-induced changes to the
marrow stromal compartment was also found to show pro-
tumorigenic properties (Engblom et al., 2017). Conversely, a
population of SiglecF-°w CD74Migh neutrophils has recently been
proposed to be able to cross-present antigen (Tang et al., 2024)
and have anti-tumorigenic functions. Neutrophils have been
proposed to gain APC capability through several mechanisms:
cytokines, such as GM-CSF (Matsushima et al., 2013) can induce
the expression of MHC-II, CD80, and CD86 by neutrophils and
stimulate lymphocyte proliferation (Hampton et al., 2015), and
upon direct contact with T cells (Abi Abdallah et al., 2011).
Nonetheless, the precise mechanisms of antigen processing by
neutrophils and their functional relevance in cancer or CVD are
still poorly understood.

Another recent study found three distinct intratumoral
neutrophil states: T1 (immature), T2 (mature), and T3 (dcTRAIL-
R1*), which were different from blood, bone marrow or splenic
neutrophils and showed a deterministic path of differentiation
from T1/T2 to T3 state in several tumor models (Ng et al., 2024).
This work suggested that neutrophils, regardless of their mat-
uration state, can reach a definite state in the TME (T3), which
was associated with an increased lifespan and with hypoxic and
glycolytic niches within the context of pancreatic ductal ade-
nocarcinoma tumors, where they were pro-angiogenic.

Most of the reports of neutrophil function in cancer show
them promoting tumor initiation, progression, and metastatic
spread. For instance, neutrophils can elicit malignant transfor-
mation by inducing DNA damage through ROS (Weitzman and
Stossel, 1981; Weitberg et al., 1983; Weitzman et al., 1985; Canli
et al, 2017, Wculek et al, 2020) or by producing pro-
inflammatory microRNA-bearing microparticles (Butin-Israeli
et al., 2019). They also promote tumor progression by releasing
different mediators, including prostaglandin E2 (PGE2) to pro-
mote cancer cell proliferation (Antonio et al., 2015), IL-1 receptor
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antagonist (IL-1RA) that protects prostate cancer cells from se-
nescence (Di Mitri et al., 2014), matrix metalloproteinase-9
(MMP-9) to activate vascular endothelial growth factor
(Nozawa et al., 2006; Deryugina et al., 2014), prokineticin-2
(Bv8) to promote angiogenesis (Shojaei et al., 2007), or neu-
trophil elastase, which degrades insulin receptor substrate
1 (IRS-1) and induces cancer cell proliferation (Houghton et al.,
2010). Neutrophils can also directly provide lipids to cancer
cells to fuel cancer cell proliferation (Li et al., 2020).

Neutrophils contribute to immune suppression by several
mechanisms, including suppressing T cell function through
expression of programmed cell death ligand 1 (PD-L1) (He et al.,
2015; Wang et al., 2017), direct physical contact (Thewissen et al.,
2011), suppressing IL-17+ y8 T cells (Mensurado et al., 2018), and
recruiting regulatory T cells or macrophages (Zhou et al., 2016;
Wang et al., 2021a). Neutrophils also promote metastatic spread,
for instance, by producing leukotrienes to aid cancer cell pro-
liferation (Wculek and Malanchi, 2015), forming clusters with
circulating cancer cells that expand their metastatic potential
(Szczerba et al., 2019), or helping establish a pro-metastatic ni-
che (Bald et al., 2014; Casbon et al., 2015; Coffelt et al., 2015;
Weulek and Malanchi, 2015; Spiegel et al., 2016; He et al., 2024).
Neutrophils also produce NETs in the context of cancer, and
NETs have been implicated in virtually all stages of tumori-
genesis, progression, and metastasis (Adrover et al., 2023).

NETs are web-like, filamentous extracellular structures
released by neutrophils in response to supernumerary
(Brinkmann et al., 2004) or oversized (Branzk et al., 2014)
pathogens, but are also released in sterile injuries (Jorch and
Kubes, 2017). NETs trap pathogens in a meshwork of DNA,
histones, proteases, and cytolytic and pro-inflammatory com-
pounds (Brinkmann et al., 2004; Pham, 2006; Jaillon et al., 2007;
Lauth et al., 2009; Urban et al., 2009; Kessenbrock et al., 2009;
Papayannopoulos, 2018) and are, therefore, highly cytotoxic and
pro-thrombotic structures.

NETs expose more than 500 proteins (Rayes et al., 2020),
many of which can affect cancer directly. For instance, MMP9 is
a key neutrophil protease associated with NETs (Egeblad and
Werb, 2002), and it can induce vascular dysfunction by caus-
ing endothelial cell damage (Carmona-Rivera et al., 2015), while
also inducing angiogenesis (Ardi et al., 2007). NET-bound ca-
thepsin G can activate metalloproteases and proteolyze many
extracellular matrix components to enable cancer cell invasion
(Guan et al., 2021). Histones within NETs can damage endo-
thelial cells directly, as they are inherently cytotoxic (Parseghian
and Luhrs 2006; Silvestre-Roig et al., 2019), while NET-
associated DNA physically traps circulating cancer cells to al-
low metastatic colonization (Cools-Lartigue et al., 2013; Najmeh
etal., 2017) and acts as a scaffold to concentrate protease activity
on ECM substrates (Albrengues et al., 2018).

NETs play important roles in tumor establishment, progres-
sion, aggressiveness, and dissemination. Several cancer cell lines
induce NET formation, and NETs, in turn, stimulate cancer cell
invasion (Park et al., 2016; Jung et al., 2019; Nie et al., 2019; Jin
et al.,, 2021), metastatic dissemination (Cools-Lartigue et al.,
2013; Ren et al.,, 2021), and tumor growth, leading to reduced
survival (Miller-Ocuin et al., 2019). NETs can also affect tumor
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metabolism, as NET-derived neutrophil elastase stimulates
TLR4 signaling on tumor cells to enhance mitochondrial pro-
duction of ATP, thereby increasing primary tumor growth
(Yazdani et al., 2019). Furthermore, NETs seem to be present in
premetastatic tissues before overt metastasis takes place (Lee
et al., 2019; Rayes et al., 2019; Yang et al., 2020) and can
awaken dormant disseminated cancer cells (Albrengues et al.,
2018). NETs also impair adaptive immune responses, for in-
stance, by acting as a physical barrier that limits cancer cells and
cytotoxic natural killer or T cell interaction (Teijeira et al., 2020;
Xia et al., 2020) or by exposing PD-L1 (Kaltenmeier et al., 2021).
In consequence, NET inhibition can improve response to im-
munotherapy (Teijeira et al., 2020).

While most reports show that neutrophils and NETs are pro-
tumoral, they can also show anti-tumor behaviors. For instance,
NETs can limit the migration and proliferation of melanoma cells
in vitro (Schedel et al., 2020) and promote the activation of CD4*
T cells in co-culture (Tillack et al., 2012). Neutrophils can kill
cancer cells by producing ROS or reactive nitrogen species
(Fridlender et al., 2009; Granot et al., 2011; Finisguerra et al.,
2015; Mahiddine et al, 2019), by expressing TNF-related
apoptosis-inducing ligand (Koga et al., 2004), by inducing can-
cer cell detachment from the basement membrane (Blaisdell
et al., 2015), or by mechanically disrupting the cancer cell’s
plasma membrane, in a process termed trogoptosis (Matlung
et al., 2018). Neutrophils can also stimulate adaptive immune
responses against tumors. For instance, neutrophils can directly
activate T cells (Radsak et al., 2000; Eruslanov et al., 2014),
present antigens (Beauvillain et al., 2007; Singhal et al., 2016;
Tang et al., 2024), and promote the anti-tumoral polarization of
unconventional af T cells (Ponzetta et al., 2019).

Cancers can communicate with neutrophils or their pro-
genitors through various mediators produced by cancer cells
themselves or by the TME (Fig. 2), including G-CSF to control
granulopoiesis (Nishizawa et al., 1990; Manz and Boettcher,
2014; Casbon et al., 2015) and mobilization from the marrow
(Semerad et al., 2005; Christopher et al., 2009). Other cancer-
produced growth factors and cytokines such as GM-CSF, IL-6, IL-
1B, and IL-17 also affect hematopoiesis (Forlow et al., 2001;
Morales et al., 2010; Manz and Boettcher, 2014; Aggen et al.,
2021). Several chemokines, such as CXCLI, CXCL2, CXCL5,
CXCL6, and IL-8, act to recruit circulating neutrophils to the
tumor (Jamieson et al., 2012; Park et al., 2016; Mollica Poeta et al.,
2019). While signaling through CXCR2 is a prime chemo-
attracting signal for neutrophils, it also has other roles in neu-
trophil biology, such as accelerating the acquisition of an aged
phenotype (Adrover et al., 2019), but whether tumor-released
CXCR2 ligands (such as CXCL1 or CXCL2) affect this phenome-
non remains to be understood. Pro-angiogenic factors like
vascular endothelial growth factor A (VEGFA) can also attract
neutrophils to the TME, likely toward hypoxic regions
(zittermann and Issekutz, 2006). Furthermore, apoptosis of
cancer cells leads to the release of IL-8 to attract neutrophils in
colorectal cancer (Schimek et al., 2022). IL-8 and other signals
induce the formation of NETs (Adrover et al., 2023; Teijeira
et al., 2021), including the loss of histidine-rich glycoprotein
(Yin et al., 2023), or the expression of cathepsin C (Xiao et al.,
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Figure 2. Cancer-derived signals affect neutrophil properties. Cancer
can affect neutrophils by producing a variety of signals that alter neutrophil
properties or their production at the bone marrow level. CTSC, cathepsin C.

2021). Cancer cells can also suppress neutrophil functions
through direct interaction (Yajuk et al., 2021; Huo et al., 2022).
Finally, cancer treatments can affect neutrophil function, for
instance, by modifying their migration ability (Mendonga et al.,
2006) or their release from the bone marrow (Yu et al., 2022).
Neutrophils are also affected in premalignant conditions,
such as CH. CH refers to the acquisition of somatic mutations in
hematopoietic stem cells that confer a self-renewal, prolifera-
tive, or survival competitive advantage over neighboring cells
(Weeks and Ebert, 2023). Most common mutations take place in
epigenetic regulators, such as TET2, DNMT34, or ASXL1, but
also in signal transduction genes like JAK2 or DNA damage re-
sponse, such as TP53 (Genovese et al., 2014). While somatic
mutations are common with age (Martincorena, 2019), the he-
matopoietic system is among the most affected systems because
of its high turnover rate. CH is seldom detected in individuals
under 40 years of age, but it may be an inevitable phenomenon
in the elderly (Zink et al., 2017). While CH is a premalignant
state, the relative progression risk is low (Jaiswal et al., 2014),
but it can lead to hematological malignancies, particularly my-
eloid neoplasms (Genovese et al., 2014; Jaiswal et al., 2014; Desai
etal., 2018). CH is common as well in patients with solid tumors,
especially in ovarian, thyroid, lung, and kidney cancers (Bolton
et al., 2020; Kar et al., 2022), and it leads to increased
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inflammatory and neutrophil-related gene signatures in several
cancer types (Fairchild et al., 2023). But treatment regimens in
cancer patients make interpretation of these data difficult, as
genotoxic stress (i.e., radiation or chemotherapy) can drive
therapy-related CH or enhance preexisting CH (Coombs et al.,
2017; Gillis et al., 2017) in cancer patients.

Beyond cancer, CH is associated with a variety of disease mani-
festations, most notably CVD. CH associates (an association as strong
as that of smoking, hyperlipidemia, and diabetes) with increased
risk of coronary heart disease, myocardial infarction (MI), ischemic
stroke, atherosclerosis (Jaiswal et al., 2017; Fuster et al., 2017), and
nonischemic heart failure (Yura et al., 2021). DNMT3A or TET2
mutations accelerate disease progression and increase all-cause
mortality risk in ischemic heart failure patients (Dorsheimer et al.,
2019; Li et al., 2025). Beyond CVD, individuals with CH are at higher
risk for a variety of other conditions, including chronic lung disease
(Miller et al., 2022), chronic liver disease (Wong et al., 2023), dia-
betes (Jaiswal et al., 2014), gout (Agrawal et al., 2022), autoimmune
disease (Tanaka et al., 2020), and infection (Quin et al., 2024;
Zekavat et al., 2021). In most cases, the effect of CH in these diseases
revolves around increased inflammation.

Clonally expanded, mutated stem cells produce progeny
carrying the same mutations, leading to altered downstream
immune cell number or function. CH is associated with in-
creased amounts of circulating neutrophils and platelets (Kar
et al., 2022; Zekavat et al., 2021). Most notably, TET2 mutation
causes a myeloid bias of hematopoiesis, a myeloid-rich TME
(Pich et al., 2025), and endows myeloid cells with increased pro-
inflammatory ability (Fairchild et al., 2023). TET2 deficiency
alters neutrophil function, promotes the production of imma-
ture neutrophils, and enhances neutrophil expression of pro-
inflammatory mediators (such as IL-6 or IL-1B), while reducing
neutrophil phagocytosis, motility, and extravasation. TET2-
mutant neutrophils also produce NETs that are more resistant
to degradation (Huerga Encabo et al., 2023; Quin et al., 2024;
Fuster et al., 2017; Agrawal et al., 2022).

Neutrophils, thus, are greatly affected by growing tumors, as
well as by premalignant states such as CH. Importantly, their
behavior is affected systemically. It is, thus, conceivable that
these reprogrammed neutrophils then show altered behaviors in
sites other than the tumor itself and, as such, could be involved
in the heightened CVD that cancer patients endure.

Cancer and CVD
CVD and cancer together account for nearly 70% of disease-
related deaths in developed countries (Von Itter and Moore,
2024; Sturgeon et al., 2019). Recent research has increasingly
shown that cancer patients face a substantially higher risk of de-
veloping CVD (Florido et al., 2022; Paterson et al., 2022) and that
CVD is not only highly prevalent but also remains a leading cause of
death among cancer survivors (Miller et al., 2019; Sturgeon et al.,
2019). Furthermore, cancer diagnosis is linked to an elevated risk
for CVD across disease manifestations, including heart failure
(Marenzi et al., 2025), stroke (Zaorsky et al., 2019), MI (Guo et al.,
2021), and venous thromboembolism (VTE) (van Es et al., 2014).
So far, research has been mostly focused on the contribution
of cancer therapy, but treatment-naive cancer patients also
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display abnormally elevated levels of CVD (Bradshaw et al.,
2016), suggesting that treatment is not the only factor at play.
One additional, non-mutually exclusive explanation lies in the
broad effects that cancer elicits in the host and, particularly, in
the changes that it elicits on the hematopoietic compartment and
on neutrophils. In fact, in patients with cancer and CVD, an el-
evated neutrophil-to-lymphocyte ratio (NLR) is linked to higher
mortality rates (Cassidy et al., 2017). Higher NLR values are also
associated with deleterious outcomes in cancer treatment-
related cardiotoxicity (Akinci Ozyurek et al., 2017; Drobni
et al., 2020b). This suggests that NLR or other inflammation
markers could be a useful tool for risk stratification in patients
(Ridker et al., 2000; Zhan et al., 2021; Higaki et al., 2022).

Interestingly, many of the risk factors shared between cancer
and CVD affect neutrophils directly. Obesity (McDowell et al.,
2021), high-fat diet (D’Abbondanza et al., 2019), hypercholes-
terolemia (Warnatsch et al., 2002), smoking (Albrengues et al.,
2018), CH (Wolach et al., 2018; Huerga Encabo et al., 2023), or
hypertension (McCarthy et al., 2021) all increase the likelihood
of neutrophils forming NETs. On the other hand, NETs are
critically involved in cancer, as outlined above (Adrover et al.,
2023), but also in CVD (Bonaventura et al., 2020), including in
atherosclerosis (Knight et al., 2014; Warnatsch et al., 2002), MI
(Mangold et al., 2015), and stroke (Pefia-Martinez et al., 2019;
Pefia-Martinez et al., 2022). Importantly, NETs are also known
drivers of intravascular inflammation and thrombosis (Gémez-
Moreno et al., 2018), which are highly prevalent complications
in both cancer (Pantazi et al., 2024; Demers et al., 2012; Rosell
et al., 2022) and CVD (Stark and Massberg, 2021).

Thrombosis

Thrombosis refers to the formation of blood clots within the
vasculature, which impair blood flow and can result in tissue
infarction of areas downstream of the affected vessel, with sig-
nificant clinical consequences (Mackman, 2008). Neutrophils
play prominent roles in thrombosis (Fig. 3) through their in-
teraction with platelets (von Briihl et al., 2012; Hidalgo et al.,
2009; Sreeramkumar et al., 2014) and through NET formation
(Fuchs et al., 2010; Maugeri et al., 2014). Interestingly, neu-
trophils can be recruited to the damaged endothelium even be-
fore platelets (Darbousset et al., 2014), and although platelets are
the prime players in thrombosis, NETs can also induce platelet-
independent clots (Jiménez-Alczar et al., 2017).

VTE, which includes both deep vein thrombosis (DVT) and
pulmonary embolism, can act as an early warning of cancer
(Fernandes et al., 2019), as it is often the first presenting
symptom in individuals with undiagnosed malignancy (Otten
and Prins, 2001). VTE is the second most common preventable
cause of death in cancer (Lyman et al., 2021), and cancer patients
have a higher incidence and recurrence rate of VTE than other
patient groups (Grilz et al., 2021; Timp et al., 2013). In a study
examining risk factors for VTE, individuals with cancer had a
fourfold higher risk of developing thrombosis compared with
those without cancer (Mulder et al., 2021). Additionally, cancer
patients with VTE experienced a twofold or greater increase in
mortality compared with cancer patients without VTE (Lee and
Levine, 2003).
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Figure 3. Neutrophils in CVD. Neutrophils are key players in CVD. In thrombosis, neutrophils and platelets enter a feed-forward loop of activation that drives
further endothelial damage and platelet deposition. Neutrophils, through NET formation, can also destabilize thrombi, leading to emboli formation. In M,
neutrophils play dual roles. In the early phase, they are pro-inflammatory, help polarize macrophages to a pro-inflammatory state, degrade ECM, and block
fibroblast function. In late stages, they assume anti-inflammatory functions, activate fibroblasts, and, through efferocytosis, polarize macrophages to a pro-
resolving phenotype. In atherosclerosis, neutrophils induce endothelial damage, helping LDL deposition and monocyte recruitment. In intermediate phases,
neutrophils release NETs and degranulate, releasing MPO that oxidizes LDL particles and fuels foam cell formation. In advanced stages, neutrophils drive plaque

erosion and aid in forming a necrotic core through NET formation and the release of membrane-damaging histones. LDL, low-density lipoprotein.

These findings highlight the importance of understanding
how the hypercoagulable state of cancer is established. VTE is
triggered by a combination of plasma hypercoagulability, blood
flow vortices, stasis, and endothelial activation (Mackman,
2012). Risk factors for VTE, including thrombocytosis (Sylman
et al., 2017), tissue factor (Zwicker et al., 2009), cytokines, sol-
uble P-selectin (Ay et al., 2008), and elevated coagulation factors
in cancer, can contribute to the prothrombotic state (Connolly
and Khorana, 2010; Demers et al., 2012; Hisada and Mackman,
2017). Furthermore, several studies have shown that leukocy-
tosis (high levels of white blood cells in circulation) is linked
to an increased risk of VTE in lung (Kasuga et al., 2001) and
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colorectal cancer patients (Hajebi et al., 2021), suggesting that
leukocytosis may be common in cancer-associated thrombosis
(Hisada and Mackman, 2017; Khorana et al., 2008). Leukocytosis
is, however, a vague term, and further research is needed to
understand which specific immune populations are at play. In-
terestingly, neutrophils are often increased in cancer patients
(Schmidt et al., 2005; Antoine et al., 1998; Lechner et al., 2010;
Templeton et al., 2014) and are critically involved in VTE
(Stewart, 1993; von Briihl et al., 2012; Kushnir et al., 2016). Be-
yond numbers, activation of neutrophils and NET formation
have also been associated with the pathogenesis of VTE
(Dhanesha et al., 2023). NETs are particularly relevant
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(Martinod et al., 2013), to the point that the circulating levels of
citrullinated histone H3 (a marker for NETs) predict the risk of
VTE in cancer patients (Mauracher et al., 2018). NETs bind
active coagulation factor XII, which stimulates further adhe-
sion and NET formation (Schmaier and Stavrou, 2019), and
contain tissue factor (Kambas et al., 2012), both of which trigger
the coagulation cascade (Kambas et al., 2012).

As discussed above, cancer can promote NET formation in
multiple ways, and NETs interact with the endothelium, plate-
lets, erythrocytes, and coagulation factors to stimulate thrombus
formation (Thalin et al., 2019) and coagulation in DVT (Fuchs
et al, 2012), ultimately driving fibrin deposition in venous
thrombosis (Fuchs et al., 2010). The signaling pathways under-
lying the induction of NETs in DVT are not yet fully understood,
but ROS (Gutmann et al., 2020) and IL-8 (Van Aken et al., 2002)
have been proposed to play an important role. Of note, IL-8 is
often elevated in cancer patients (Waugh and Wilson, 2008;
Todorovié-Rakovi¢ and Milovanovié, 2013) and can directly
trigger NET formation (An et al., 2019).

MI and stroke

Arterial thromboembolism (ATE) refers to the obstruction of an
artery by a clot (thrombus) or an embolus, which can be a
traveling clot or other materials, such as ruptured atheroscle-
rotic plaques. This blockage obstructs blood flow, resulting in
ischemia and damage to the tissues perfused by the affected
artery (May and Moll, 2021). This can occur in different vascular
areas, such as the brain (resulting in a stroke [Chen et al., 2011]),
the heart (causing a MI [Rinde et al., 2017]), the kidneys, or the
legs (leading to acute limb ischemia (Wang et al., 2021b). ATE
represents a significant challenge, contributing to increased
mortality and morbidity rates among cancer patients (Balomenakis
et al., 2023). Patients with a newly diagnosed cancer experience a
substantially elevated short-term risk of ATE (Navi et al., 2017), and
ATE risk increases by 70% in elderly patients (Navi et al., 2019). The
risk of ATE seems to be highest in lung and colorectal cancer (Navi
et al., 2019; Guo et al., 2021).

Ischemic stroke is one of the leading causes of death globally
(Bogiatzi et al., 2014), and it is widely acknowledged as a com-
plication of cancer (Herrmann, 2020; Lindvig et al., 1990). A
stroke can occur at any point during the course of the disease in
5% of cancer patients (Salazar-Camelo et al., 2021) and may be
the first symptom in up to 3% of patients with an occult malig-
nancy (Cocho et al., 2015; Taccone et al., 2008; Xie et al., 2024).
MI is another leading cause of death and disability globally
(Thygesen et al., 2007). The relative risks for MI and ischemic
stroke in cancer patients are similar (Navi et al., 2019). Beyond
increased incidence, individuals with a prior cancer diagnosis
and MI had lower lipid profiles (LDL, triglycerides and choles-
terol) than non cancer patients (Koo et al., 2021), and experience
higher postMI mortality than those without cancer (Pothineni
et al., 2017), potentially due to a sustained pro-inflammatory
state and vascular toxicity from cancer treatments (Libby and
Kobold, 2019). Chemotherapy is known to cause cardiotoxicity
(Economopoulou et al., 2015), while immunotherapy (Matzen
et al.,, 2021) and radiotherapy can accelerate atherosclerosis
and coronary artery disease (Kwok et al., 2021). Furthermore,
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immune checkpoint inhibitors (ICIs) have been associated with a
threefold higher risk for atherosclerotic cardiovascular events,
including MI (Drobni et al., 2020a). This link between ICIs and
cardiovascular complications (Green et al., 2023) is currently
under active investigation. Retrospective studies have reported
an increased incidence of VTE following ICI therapy (Allouchery
etal., 2022). Furthermore, a commonly reported complication of
ICI is myocarditis (Berg et al., 2017; Johnson et al., 2016), which
causes immune cell infiltration into the cardiac sinus, cardiac
tissue, and atrioventricular nodes (Mahmood et al., 2018). In-
terestingly, patients under ICI who develop myocarditis have
been shown to have changes in the proportion of circulating
neutrophils (Drobni et al., 2020b).

Neutrophils are considered detrimental in the acute phase of
MI (Zhang et al., 2022) and are among the first immune cells to
infiltrate the infarcted myocardium to propagate inflammation
(Fig. 3), with their numbers peaking around 24-48 h after the
acute event (Ma et al., 2016). During this initial phase, their
influx contributes to acute myocardial injury, for example,
through the release of proteolytic enzymes that weaken the
structural integrity of the myocardium (Romson et al., 1983)
or through ROS production (El Kazzi et al., 2020; Carbone et al.,
2020), especially during reperfusion (Jolly et al., 1986).
Neutrophil-derived serine proteases can also activate the coag-
ulation cascade and cause the occlusion of large vessels, leading
to arterial thrombosis (Massberg et al., 2010). NETs also play a
detrimental role in acute MI (Liu et al., 2019a; Langseth et al.,
2020; Ge et al., 2015; Savchenko et al., 2014). As discussed above,
cancer can promote NET formation, ROS production, and the
release of neutrophil proteases, which could potentially lead to
worsened MI outcomes. Neutrophils also release many pro-
inflammatory factors, including MIP-1a, CCL5, CXCL1, CXCL2,
S100A8, S100A9, and IL-1p that, collectively, drive further im-
mune cell influx (Daseke et al., 2021) and polarize macrophages
to a pro-inflammatory phenotype. Through inflammasome ac-
tivation, this leads to further IL-1B production (Kawaguchi et al.,
2011), which inhibits fibroblast function and, together with
neutrophil-derived proteases like MMP8, leads to collagen deg-
radation (Saxena et al., 2013). IL-1B and neutrophil-released
alarmins further drive granulopoiesis to enhance systemic
neutrophil availability (Sreejit et al., 2020). At later stages,
neutrophils start to show anti-inflammatory functions (Ma et al.,
2016) and release fibronectin or fibrinogen (Daseke et al., 2019),
which in turn promote fibroblast activity (Gray et al., 1993).
Neutrophils then die by apoptosis and are phagocytosed by
macrophages to induce pro-repair macrophage polarization
(Peet et al., 2020). The conversion from pro-inflammatory to
pro-resolving neutrophils over time in AMI is critical, as evi-
denced by studies blocking this conversion that show worsened
remodeling and outcome (Iyer et al., 2015).

The circadian status of neutrophils and the acquisition of an
“aged” phenotype are important in MI, as the presence of aged
neutrophils in circulation worsens the outcome of acute MI
(Adrover et al., 2019). Neutrophil ageing refers to the phenotypic
changes experienced by neutrophils from the time they are re-
leased into blood to their disappearance from the circulation. Aged
neutrophils show a hyper-segmented nucleus, low extravasation
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ability toward inflammatory stimuli, and are identified as
CD62Lw, CXCR2°%, and CXCR4Mgh neutrophils (Aroca-Crevillén
et al., 2020). In this line, it is intriguing to note that cancer can
promote the ageing of circulating neutrophils (Mittmann et al.,
2021; Yang et al., 2021), and aged neutrophils have been shown to
promote intravascular coagulation (Adrover et al., 2019).
Interestingly, neutrophil subsets similar to some found in the
context of cancer have been found in MI: SiglecF™ig? neutrophils
with increased phagocytosis and ROS production ability increase
over time in the cardiac tissue after MI (Vafadarnejad et al.,
2020). The acquisition of SiglecF has been proposed to drive
neutrophil apoptosis to promote the resolution of inflammation.
Studies also found the presence of N1 pro-inflammatory neu-
trophils (expressing Ccl3, Ilib, Il12a, and Tnfa) in the heart upon
MI, which shifted over time toward an N2 (expressing Cd206 and
1110) anti-inflammatory phenotype (Ma et al., 2016). What the
different subsets of neutrophils present in the cardiac tissue do
in the context of cancer, and what other cancer-associated
neutrophil subtypes do in MI remains, however, to be explored.

Atherosclerosis
Atherosclerosis is a progressive inflammatory disease of large
arteries, characterized by an accumulation of lipids, inflamma-
tory cells, and fibrous tissue in arterial walls, thickened intimal
layers, altered endothelium, and overall compromised arterial
function. It leads to reduced and turbulent luminal blood flow
and, when the lesions become unstable, to embolic clinical
complications such as MI and stroke (Bjorkegren and Lusis,
2022). Cancer is linked to heightened inflammation, which can
significantly contribute to the development of atherosclerosis
(Crusz and Balkwill, 2015). In breast and colorectal cancer, pa-
tients show a high burden of atherosclerosis and related CVDs at
the time of cancer diagnosis (Melson et al., 2024; Wang et al.,
2018). Interestingly, the prevalence of risk factors for athero-
sclerosis is high in patients with a history of breast cancer, and
differential associations between these risk factors suggest po-
tential differences in the pathogenesis of atherosclerosis be-
tween breast cancer patients and controls (Srémek et al., 2013).
While cancer can contribute to atherosclerosis through var-
ious mechanisms, including those discussed in the previous
section on thrombosis, the most commonly studied are the side
effects of radiotherapy and anti-tumor drugs. Radiotherapy can
induce vascular damage, which increases vascular permeability
and triggers inflammation, leading to intimal proliferation,
collagen deposition, and fibrosis, all of which promote the for-
mation of atherosclerosis plaques (Morganti et al., 2002). Several
chemotherapeutic agents have also been linked to an increased
incidence of atherosclerosis (Jiang et al., 2024), most notably
antimetabolites (Raposeiras Roubin and Cordero, 2019), anti-
microtubule agents (Hassan et al., 2018), and tyrosine kinase
inhibitors (Albini et al., 2010). Checkpoint blockade inhibitors
have reignited interest in the development of immunotherapeutic
drugs for cancer, but an increased incidence of atherosclerosis in
treated patients has been reported and should be carefully studied
(Chan et al., 2023; Drobni et al., 2020a; Poels et al., 2021). NLR is an
independent predictor of atherosclerotic cardiovascular risk and
is useful in monitoring ICI-induced atherosclerosis (Zhang et al.,
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2021), suggesting that neutrophils could be playing a role in this
phenomenon, especially given that neutrophils and NETs are
known to play prominent roles in atherosclerosis (Pérez-Olivares
and Soehnlein, 2021; Warnatsch et al., 2002; Drechsler et al., 2010;
Knight et al., 2014; Doring et al., 2014).

Hypercholesterolemia is a critical driver of atherosclerosis.
Atherogenic lipoproteins interact with vascular wall cells and
induce monocyte recruitment, leading to macrophage differen-
tiation, lipid uptake, and necrotic core formation in the sub-
intima layer (Fan and Watanabe, 2022). In early phases of
atherosclerosis (Fig. 3), neutrophils drive vascular dysfunction
by producing ROS and NETs and releasing proteases in the ar-
terial luminal space (Soehnlein, 2012; Silvestre-Roig et al.,
2020), promote the accumulation of low-density lipoprotein in
the arteries (Higazi et al., 1997), and help recruit monocytes to
the lesion area (Drechsler et al., 2010). Additionally, neutrophils
release CCL2, which increases monocyte adhesion (Winter et al.,
2018) and endothelial activation, stimulating neutrophils to
produce NETSs, leading to further monocyte recruitment (Gupta
et al., 2010). Hypercholesterolemia also leads to the release of
chemokines that drive neutrophil infiltration into the lesion
(Drechsler et al., 2010). At intermediate stages, neutrophils de-
granulate and release ROS and proteases like myeloperoxidase
(MPO) that oxidize lipoproteins, enhancing the formation of
foam cells (Carr et al., 2000), lipid-laden macrophages, which
are a hallmark of atherosclerotic lesions (Gallo et al., 2025).
Neutrophils also promote macrophage polarization to a pro-
inflammatory state, increasing their production of IL-6 and IL-
1B, which in turn promote the differentiation of Th17 cells, that
further increase neutrophil infiltration to the lesion (Warnatsch
et al., 2002). At later stages, neutrophils destabilize the plaque,
inducing endothelial denudation and plaque erosion (Quillard
et al., 2015). Hypercholesterolemia also promotes NET forma-
tion (Warnatsch et al., 2002; Rada, 2017), and NETs cause plaque
destabilization by inducing death or damage of smooth muscle
cells or endothelial cells, resulting in superficial plaque erosion
(Quillard et al., 2015) and plaque rupture (Mawhin et al., 2018;
Silvestre-Roig et al., 2019). Besides their role in plaque destabi-
lization, NET-associated histone H2a also mediates monocyte
adhesion to endothelial cells and accelerates atherosclerosis
(Schumski et al., 2021). Neutrophils also play an important role
in clearing cell debris and recruiting other immune cells, in-
cluding monocytes and lymphocytes, to the injury site, which is
critical for scar formation (Soehnlein et al., 2009; Chalise et al.,
2021). Finally, NET-platelet interaction and thrombus formation
accelerate atherosclerosis progression by causing endothelial
dysfunction in humans and mice (Megens et al., 2012). There-
fore, the ways in which cancer affects neutrophil biology, in-
cluding by promoting their NET-formation ability, likely affect
atherosclerosis in cancer patients.

Concluding remarks: Neutrophils as drivers of cancer-related
CvD

Cancer patients experience an increased risk of CVD, which is
usually attributed to the effects of treatment and shared risk
factors. We propose that neutrophils provide a mechanistic link
between cancer and CVD (Fig. 4). As discussed above, neutrophils
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Figure 4. Neutrophils in cancer-driven CVD. Neutrophils are key players in CVD and are heavily affected by the TME and tumor macroenvironment and
premalignant states, such as CH and cancer treatment. The interplay between cancer and vascular health is likely to be influenced by cancer-elicited changes to

neutrophil behavior.

are drivers of CVD and are affected by cancer at multiple levels. A
central mechanism through which neutrophils promote these ef-
fects appears to be NET formation, and these structures are com-
monly found in cancer patients, not only in the tumors but also
systemically (Demers et al., 2012; Leal et al., 2017; Zhang et al., 2019).
NETs, as discussed above, are highly pro-thrombotic structures,
and thrombosis greatly affects CVD onset and outcome.

Additionally, central to the association between cancer and CVD
is the capacity of tumors to alter hematopoiesis, leading to altered
production of neutrophils, as well as to recruit them by releasing
growth factors and inflammatory cytokines that can directly mo-
bilize these cells out of the marrow to contribute to systemic in-
flammation and thrombosis. Cancer treatments, including targeted
therapies and chemotherapy, can amplify these effects.

All this leads to the appearance of cancer-induced neutrophil
subpopulations, as discussed above, whose potential involve-
ment in systemic damage and CVD is still largely unknown. We
have recently shown (Adrover et al., 2025) that cancer can elicit
the appearance of vrPMNs with increased NET formation abil-
ity, increased ability to interact with platelets, and decreased
extravasation capacity. We believe that these neutrophils, which
are highly reactive inside the vasculature, are in an ideal position
to link cancer and CVD. In addition, this could help explain why
treatment-naive cancer patients also show increased CVD bur-
den. Unfortunately, the field has paid little attention so far to
vascular events and the intravascular role of cancer-associated
neutrophils. We believe that further research should be devoted
to understanding the systemic effects of cancer at the systemic
vascular level and the roles of cancer-elicited neutrophil sub-
types in CVD. This research has the potential to open new
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therapeutic avenues to relieve the CVD burden that cancer pa-
tients and survivors currently endure.
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