Lipid scramblases allow passive flip-flop of phospholipids between bilayer leaflets, thereby promoting membrane symmetry. At the endoplasmic reticulum (ER), where phospholipid synthesis is restricted to one leaflet, scramblase activity should be essential for equilibrated membrane growth. The yeast protein Ist2 contains an ER domain and a cytosolic tail that binds the plasma membrane and participates in the transfer of phosphatidylserine. We show both in vitro and in silico that the ER domain of Ist2, which bears homology to the TMEM16 proteins, possesses a lipid scramblase activity that is not regulated by Ca2+. In cells, overexpression or deletion of the ER domain of Ist2 affects ER-related processes including COPII-mediated vesicular transport, lipid droplet homeostasis, and general phospholipid transport, with a specific contribution of residues implicated in lipid scrambling. The weak phenotypes can be augmented by the deletion of another putative scramblase, the protein insertase Get1, suggesting that the combined action of different proteins supports lipid scrambling at the ER.

This article is distributed under the terms as described at https://rupress.org/pages/terms102024/.
You do not currently have access to this content.