Homeostatic pathways maintain the lipid composition of organelle membranes, and mechanistic links between lipid sensing, synthesis, and trafficking are lacking. Acute depletion of cell cholesterol elicits an increase in the rate of very-long-chain (VLC) sphingomyelin synthesis in the Golgi apparatus, thereby promoting cholesterol retention in the plasma membrane. Stable isotope metabolic analyses and lipid trafficking assays showed that the increase in VLC-sphingomyelin results from an increase in the rate of coatomer II–dependent trafficking of VLC-ceramide from the endoplasmic reticulum to the Golgi apparatus. An integral membrane protein of the coatomer II network, cTAGE5, is required for endoplasmic reticulum-to-Golgi trafficking of ceramide and cTAGE5 overexpression caused herniations of the endoplasmic reticulum network that entrapped a synthetic ceramide analog to which cTAGE5 could be photochemically cross-linked. We propose that cTAGE5 is a ceramide sensor for export of VLC-ceramide from the endoplasmic reticulum exit site.

This article is distributed under the terms as described at https://rupress.org/pages/terms102024/.
You do not currently have access to this content.