Skip Nav Destination
Close Modal
Update search
Filter
- Title
- Author
- Author Affiliations
- Full Text
- Abstract
- Keyword
- DOI
- ISBN
- EISBN
- ISSN
- EISSN
- Issue
- Volume
- References
Filter
- Title
- Author
- Author Affiliations
- Full Text
- Abstract
- Keyword
- DOI
- ISBN
- EISBN
- ISSN
- EISSN
- Issue
- Volume
- References
Filter
- Title
- Author
- Author Affiliations
- Full Text
- Abstract
- Keyword
- DOI
- ISBN
- EISBN
- ISSN
- EISSN
- Issue
- Volume
- References
Filter
- Title
- Author
- Author Affiliations
- Full Text
- Abstract
- Keyword
- DOI
- ISBN
- EISBN
- ISSN
- EISSN
- Issue
- Volume
- References
Filter
- Title
- Author
- Author Affiliations
- Full Text
- Abstract
- Keyword
- DOI
- ISBN
- EISBN
- ISSN
- EISSN
- Issue
- Volume
- References
Filter
- Title
- Author
- Author Affiliations
- Full Text
- Abstract
- Keyword
- DOI
- ISBN
- EISBN
- ISSN
- EISSN
- Issue
- Volume
- References
NARROW
Date
1-4 of 4
Vesa M. Olkkonen
Close
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
Sort by
Journal Articles
Journal:
Journal of Cell Biology
Journal of Cell Biology (2020) 219 (8): e202006146.
Published: 21 July 2020
Abstract
Invadopodia are dynamic protrusions that harbor matrix metalloproteinases for pericellular matrix degradation. However, the mechanisms underlying their maturation are poorly understood. Pedersen et al. (2020. J. Cell Biol. https://doi.org/10.1083/jcb.202003063 ) demonstrate a dual role of Protrudin in invadopodia elongation and matrix degradation, central to cell invasion and cancer metastasis.
Journal Articles
In Special Collection:
Lipid and membrane biology 2019
Rossella Venditti, Maria Chiara Masone, Laura Rita Rega, Giuseppe Di Tullio, Michele Santoro, Elena Polishchuk, Ivan Castello Serrano, Vesa M. Olkkonen, Akihiro Harada, Diego L. Medina, Raffaele La Montagna, Maria Antonietta De Matteis
Journal:
Journal of Cell Biology
Journal of Cell Biology (2019) 218 (3): 783–797.
Published: 18 January 2019
Abstract
Phosphatidylinositol-4-phosphate (PI4P), a phosphoinositide with key roles in the Golgi complex, is made by Golgi-associated phosphatidylinositol-4 kinases and consumed by the 4-phosphatase Sac1 that, instead, is an ER membrane protein. Here, we show that the contact sites between the ER and the TGN (ERTGoCS) provide a spatial setting suitable for Sac1 to dephosphorylate PI4P at the TGN. The ERTGoCS, though necessary, are not sufficient for the phosphatase activity of Sac1 on TGN PI4P, since this needs the phosphatidyl-four-phosphate-adaptor-protein-1 (FAPP1). FAPP1 localizes at ERTGoCS, interacts with Sac1, and promotes its in-trans phosphatase activity in vitro. We envision that FAPP1, acting as a PI4P detector and adaptor, positions Sac1 close to TGN domains with elevated PI4P concentrations allowing PI4P consumption. Indeed, FAPP1 depletion induces an increase in TGN PI4P that leads to increased secretion of selected cargoes (e.g., ApoB100), indicating that FAPP1, by controlling PI4P levels, acts as a gatekeeper of Golgi exit.
Includes: Multimedia, Supplementary data
Journal Articles
In Special Collection:
Lipid and membrane biology 2019
Rossella Venditti, Laura Rita Rega, Maria Chiara Masone, Michele Santoro, Elena Polishchuk, Daniela Sarnataro, Simona Paladino, Sabato D’Auria, Antonio Varriale, Vesa M. Olkkonen, Giuseppe Di Tullio, Roman Polishchuk, Maria Antonietta De Matteis
Journal:
Journal of Cell Biology
Journal of Cell Biology (2019) 218 (3): 1055–1065.
Published: 18 January 2019
Abstract
ER–TGN contact sites (ERTGoCS) have been visualized by electron microscopy, but their location in the crowded perinuclear area has hampered their analysis via optical microscopy as well as their mechanistic study. To overcome these limits we developed a FRET-based approach and screened several candidates to search for molecular determinants of the ERTGoCS. These included the ER membrane proteins VAPA and VAPB and lipid transfer proteins possessing dual (ER and TGN) targeting motifs that have been hypothesized to contribute to the maintenance of ERTGoCS, such as the ceramide transfer protein CERT and several members of the oxysterol binding proteins. We found that VAP proteins, OSBP1, ORP9, and ORP10 are required, with OSBP1 playing a redundant role with ORP9, which does not involve its lipid transfer activity, and ORP10 being required due to its ability to transfer phosphatidylserine to the TGN. Our results indicate that both structural tethers and a proper lipid composition are needed for ERTGoCS integrity.
Includes: Multimedia, Supplementary data
Journal Articles
In Special Collection:
JCB65: Lipid and Membrane Biology
Marie Johansson, Nuno Rocha, Wilbert Zwart, Ingrid Jordens, Lennert Janssen, Coenraad Kuijl, Vesa M. Olkkonen, Jacques Neefjes
Journal:
Journal of Cell Biology
Journal of Cell Biology (2007) 176 (4): 459–471.
Published: 05 February 2007
Abstract
The small GTPase Rab7 controls late endocytic transport by the minus end–directed motor protein complex dynein–dynactin, but how it does this is unclear. Rab7-interacting lysosomal protein (RILP) and oxysterol-binding protein–related protein 1L (ORP1L) are two effectors of Rab7. We show that GTP-bound Rab7 simultaneously binds RILP and ORP1L to form a RILP–Rab7–ORP1L complex. RILP interacts directly with the C-terminal 25-kD region of the dynactin projecting arm p150 Glued , which is required for dynein motor recruitment to late endocytic compartments (LEs). Still, p150 Glued recruitment by Rab7–RILP does not suffice to induce dynein-driven minus-end transport of LEs. ORP1L, as well as βIII spectrin, which is the general receptor for dynactin on vesicles, are essential for dynein motor activity. Our results illustrate that the assembly of microtubule motors on endosomes involves a cascade of linked events. First, Rab7 recruits two effectors, RILP and ORP1L, to form a tripartite complex. Next, RILP directly binds to the p150 Glued dynactin subunit to recruit the dynein motor. Finally, the specific dynein motor receptor Rab7–RILP is transferred by ORP1L to βIII spectrin. Dynein will initiate translocation of late endosomes to microtubule minus ends only after interacting with βIII spectrin, which requires the activities of Rab7–RILP and ORP1L.