Skip Nav Destination
Close Modal
Update search
Filter
- Title
- Author
- Author Affiliations
- Full Text
- Abstract
- Keyword
- DOI
- ISBN
- EISBN
- ISSN
- EISSN
- Issue
- Volume
- References
Filter
- Title
- Author
- Author Affiliations
- Full Text
- Abstract
- Keyword
- DOI
- ISBN
- EISBN
- ISSN
- EISSN
- Issue
- Volume
- References
Filter
- Title
- Author
- Author Affiliations
- Full Text
- Abstract
- Keyword
- DOI
- ISBN
- EISBN
- ISSN
- EISSN
- Issue
- Volume
- References
Filter
- Title
- Author
- Author Affiliations
- Full Text
- Abstract
- Keyword
- DOI
- ISBN
- EISBN
- ISSN
- EISSN
- Issue
- Volume
- References
Filter
- Title
- Author
- Author Affiliations
- Full Text
- Abstract
- Keyword
- DOI
- ISBN
- EISBN
- ISSN
- EISSN
- Issue
- Volume
- References
Filter
- Title
- Author
- Author Affiliations
- Full Text
- Abstract
- Keyword
- DOI
- ISBN
- EISBN
- ISSN
- EISSN
- Issue
- Volume
- References
NARROW
Format
Subjects
Journal
Article Type
Date
1-4 of 4
J Braun
Close
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
Sort by
Journal Articles
Fusion, fission, and transport control asymmetric inheritance of mitochondria and protein aggregates
Stefan Böckler, Xenia Chelius, Nadine Hock, Till Klecker, Madita Wolter, Matthias Weiss, Ralf J. Braun, Benedikt Westermann
Journal:
Journal of Cell Biology
Journal of Cell Biology (2017) 216 (8): 2481–2498.
Published: 14 June 2017
Abstract
Partitioning of cell organelles and cytoplasmic components determines the fate of daughter cells upon asymmetric division. We studied the role of mitochondria in this process using budding yeast as a model. Anterograde mitochondrial transport is mediated by the myosin motor, Myo2. A genetic screen revealed an unexpected interaction of MYO2 and genes required for mitochondrial fusion. Genetic analyses, live-cell microscopy, and simulations in silico showed that fused mitochondria become critical for inheritance and transport across the bud neck in myo2 mutants. Similarly, fused mitochondria are essential for retention in the mother when bud-directed transport is enforced. Inheritance of a less than critical mitochondrial quantity causes a severe decline of replicative life span of daughter cells. Myo2-dependent mitochondrial distribution also is critical for the capture of heat stress–induced cytosolic protein aggregates and their retention in the mother cell. Together, these data suggest that coordination of mitochondrial transport, fusion, and fission is critical for asymmetric division and rejuvenation of daughter cells.
Includes: Supplementary data
Journal Articles
Journal:
Journal of Cell Biology
Journal of Cell Biology (1979) 82 (3): 755–766.
Published: 01 September 1979
Abstract
Detailed studies of steady-state ion fluxes in murine lymphocytes were used to examine for possible ionic changes generated by surface Ig, the antigen receptor of B lymphocytes. When bound by ligands, surface Ig triggered the mobilization and release of 45Ca2+ from the cell interior by a transmembrane process requiring crosslinking of the bound receptors. This ionic event was unique for two reasons: (a) it did not occur when other common lymphocyte surface macromolecules were bound with rabbit anti-lymphocyte antibodies; and (b) it was not accompanied by a general perturbation of lymphocyte ionic properties such as a change in 42K+ fluxes nor did it depend on the presence of extracellular ions. Capping of surface Ig shares the same time sequence, dose response, requirement for crosslinking, and lack of dependence on extracellular ions. These correlations suggest that mobilization of intracellular Ca2+ may represent an early ionic signal for the contractile activation of lymphocytes that generates capping of surface Ig.
Journal Articles
Journal:
Journal of Cell Biology
Journal of Cell Biology (1978) 79 (2): 419–426.
Published: 01 November 1978
Abstract
In the previous study, lymphocyte surface molecules were separated into two subsets depending on whether capping was associated was associated with redistribution of cytoplasmic myosin. In the present study, the effects of the local anesthetic chlorpromazine and of the Ca2+ ionophore A23187 were compared. Both drugs affected the surface redistribution of immunoglobulin (Ig), Fc receptors, and the TL antigen--molecules that appear to cap by association with microfilaments--but had no effect on the Thy.1 (theta) and H2 antigens--molecules that cap slowly, apparently unlinked to microfilament function. The capping of Ig, Fc receptor, and TL was inhibited while that of H2 and theta was not. Both drugs reversed the Ig Fc receptor, and TL caps but not the H2 and theta caps. In the former group, the reversal of caps was accompanied by a parallel reversal of the myosin segregated to the cap area. The appearance of myosin after drug treatment varied: chlorpromazine resulted in a diffuse pattern similar to that of normal lymphocytes, whereas A23187 produced an array of aggregates and coarse filaments. The results are compatible with the view that two mechanisms for capping exist in the lymphocyte. The Ca2+ ionophore may affect capping of microfilament-dependent caps by producing a systemic activation of contractile proteins while chlorpromazine may act by disrupting a Ca2+-dependent link between surface complexes and the contractile proteins.
Journal Articles
Journal:
Journal of Cell Biology
Journal of Cell Biology (1978) 79 (2): 409–418.
Published: 01 November 1978
Abstract
A detailed kinetic analysis of the distribution of cytoplasmic myosin during the capping of various lymphocytic surface molecules revealed two distinct capping mechanisms. (a) Some cell surface molecules, including immunoglobulin, Fc receptor, and thymus leukemia antigen, all cap spontaneously in a small fraction of lymphocytes during locomotion. Cytoplasmic myosin becomes concentrated in the cytoplasm underlying these spontaneous caps. Exposure to specific antibodies causes all three of these surface molecules to cap rapidly with a concomitant redistribution of cytoplasmic myosin to the area of the cap. These antibodies also stimulate cell locomotion. (b) Other lymphocyte surface molecules, including H2 and Thy.1, do not cap spontaneously. Moreover, exposure to antibodies to these molecules causes them to cap slowly without a redistribution of cytoplasmic myosin or stimulation of cell locomotion. Exposure to concanavalin A gives a response intermediate between these two extremes. We believe that the first type of capping is active and may involve a direct link between the surface molecules and the cytoplasmic contractile apparatus. The second type of capping appears to result simply from aggregation of cross-linked molecules in the plane of the membrane.