The acidic pH of lysosomes required for function is established by the electrogenic V-ATPase proton pump. How lysosomes prevent hyper-acidification by the pump is not well established. Recently, the Parkinson’s disease (PD)-associated protein TMEM175 was proposed as a H+-selective channel to leak protons to counter over-acidification. We rigorously address key findings and predictions of this model and show that, in the lysosome, TMEM175 predominantly conducts K+ and is not a H+-selective channel. The native lysosomal H+ leak is remarkably small, ∼0.02 fA, strongly arguing against major contributions from an ion channel. The predominant effect of TMEM175 deficiencies is lysosomal alkalinization in challenged cells, which is further evidence arguing against TMEM175 as a H+-selective channel and can be explained by K+ conductance through TMEM175. Also, lysosomes can be hyper-acidified by manipulations in the presence or absence of TMEM175. Our studies clarify a basic lysosomal biological problem and provide insights into the working mechanism of TMEM175 and its contribution to PD pathology.

This article is distributed under the terms as described at https://rupress.org/pages/terms102024/.
You do not currently have access to this content.