The mitochondrial inner membrane contains a large protein complex that functions in inner membrane organization and formation of membrane contact sites. The complex was variably named the mitochondrial contact site complex, mitochondrial inner membrane organizing system, mitochondrial organizing structure, or Mitofilin/Fcj1 complex. To facilitate future studies, we propose to unify the nomenclature and term the complex “mitochondrial contact site and cristae organizing system” and its subunits Mic10 to Mic60.

Mitochondria possess two membranes of different architecture and function (Palade, 1952; Hackenbrock, 1968). Both membranes work together for essential shared functions, such as protein import (Schatz, 1996; Neupert and Herrmann, 2007; Chacinska et al., 2009). The outer membrane harbors machinery that controls the shape of the organelle and is crucial for the communication of mitochondria with the rest of the cell. The inner membrane harbors the complexes of the respiratory chain, the F1Fo-ATP synthase, numerous metabolite carriers, and enzymes of mitochondrial metabolism. It consists of two domains: the inner boundary membrane, which is adjacent to the outer membrane, and invaginations of different shape, termed cristae (Werner and Neupert, 1972; Frey and Mannella, 2000; Hoppins et al., 2007; Pellegrini and Scorrano, 2007; Zick et al., 2009; Davies et al., 2011). Tubular openings, termed crista junctions (Perkins et al., 1997), connect inner boundary membrane and cristae membranes (Fig. 1, A and B). Respiratory chain complexes and the F1Fo-ATP synthase are preferentially located in the cristae membranes, whereas preprotein translocases are enriched in the inner boundary membrane (Vogel et al., 2006; Wurm and Jakobs, 2006; Davies et al., 2011). Contact sites between outer membrane and inner boundary membrane promote import of preproteins, metabolite channeling, lipid transport, and membrane dynamics (Frey and Mannella, 2000; Sesaki and Jensen, 2004; Hoppins et al., 2007, 2011; Neupert and Herrmann, 2007; Chacinska et al., 2009; Connerth et al., 2012; van der Laan et al., 2012).

To understand the complex architecture of mitochondria, it will be crucial to identify the molecular machineries that control the interaction between mitochondrial outer and inner membranes and the characteristic organization of the inner membrane. A convergence of independent studies led to the identification of a large heterooligomeric protein complex of the mitochondrial inner membrane conserved from yeast to humans that plays crucial roles in the maintenance of crista junctions, inner membrane architecture, and formation of contact sites to the outer membrane (Fig. 1 A). Several names were used by different research groups to describe the complex, including mitochondrial contact site (MICOS) complex, mitochondrial inner membrane organizing system (MINOS), mitochondrial organizing structure (MitOS), Mitofilin complex, or Fcj1 (formation of crista junction protein 1) complex (Table 1; Harner et al., 2011; Hoppins et al., 2011; von der Malsburg et al., 2011; Alkhaja et al., 2012). Mitofilin, also termed Fcj1, was the first component identified (Icho et al., 1994; Odgren et al., 1996; Gieffers et al., 1997; John et al., 2005) and was observed enriched at crista junctions (Rabl et al., 2009). Mutants of Mitofilin/Fcj1 as well as of other MICOS/MINOS/MitOS subunits show a strikingly altered inner membrane architecture. They lose crista junctions and contain large internal membrane stacks, the respiratory activity is reduced, and mitochondrial DNA nucleoids are altered (Fig. 1 B; John et al., 2005; Hess et al., 2009; Rabl et al., 2009; Mun et al., 2010; Harner et al., 2011; Head et al., 2011; Hoppins et al., 2011; von der Malsburg et al., 2011; Alkhaja et al., 2012; Itoh et al., 2013). It has been reported that the complex interacts with a variety of outer membrane proteins, such as channel proteins and components of the protein translocases and mitochondrial fusion machines, and defects impair the biogenesis of mitochondrial proteins (Xie et al., 2007; Darshi et al., 2011; Harner et al., 2011; Hoppins et al., 2011; von der Malsburg et al., 2011; Alkhaja et al., 2012; An et al., 2012; Bohnert et al., 2012; Körner et al., 2012; Ott et al., 2012; Zerbes et al., 2012; Jans et al., 2013; Weber et al., 2013). The MICOS/MINOS/MitOS/Mitofilin/Fcj1 complex thus plays crucial roles in mitochondrial architecture, dynamics, and biogenesis. However, communication of results in this rapidly developing field has been complicated by several different nomenclatures used for the complex as well as for its subunits (Table 1).

To rectify this situation, all authors of this article have agreed on a new uniform nomenclature with the following guidelines. (a) The complex will be called “mitochondrial contact site and cristae organizing system” (MICOS). The protein subunits of MICOS are named Mic10 to Mic60 as listed in Table 1. (b) The names, including the numbers shown in Table 1, will be used in all organisms, e.g., Mitofilin/Fcj1 will be named Mic60 in any organism. In case the name MicX has been given to another gene/protein in an organism or a database requires a longer name, the name MiccX will be used in this organism, but the number will not be changed. The use of capital and small letters as well as of italics will follow species-specific conventions, e.g., in budding yeast (Saccharomyces cerevisiae), Mic60 will be used for the protein, and MIC60 will be used for the gene. (c) The current names of MICOS genes and proteins in databases will be renamed according to the uniform nomenclature. This includes the names of mutants when they contain the name of a MICOS gene or protein, e.g., fcj1Δ mutant cells will be renamed to mic60Δ mutant cells. (d) In case several isoforms of a MICOS subunit are present in an organism, this will usually be indicated by -1, -2, etc. (e.g., Mic60-1 and Mic60-2 or MICC60-1 and MICC60-2). When species-specific conventions strictly require the use of A, B, or I, II, etc. for designation of isoforms, these additions will be used. (e) In case new subunits of MICOS will be identified, they will be named MicY. The number Y will be the molecular mass of the identified mature protein in kilodaltons. The same number will be used for orthologues in other organisms, i.e., these orthologues are also named MicY and thus retain the initially assigned Mic number independent of their exact molecular mass. In case a number has already been used for another Mic protein, the closest next available number will be used. The name Mic will only be given to genuine subunits of the MICOS complex, not to interaction partners or assembly factors that are not a steady-state component of the MICOS complex. (f) The names Mic14, Mic17, and Mic23 (mitochondrial intermembrane space cysteine motif proteins) that are currently used for three non-MICOS yeast proteins (Gabriel et al., 2007; Vögtle et al., 2012) will be changed to Mix14, Mix17, and Mix23 (mitochondrial intermembrane space CXnC motif proteins) in the Saccharomyces Genome Database, and the new nomenclature will be used for orthologues identified in other organisms.

The MICOS complex is of central importance for the maintenance of mitochondrial inner membrane architecture and the formation of contact sites between outer and inner membranes and thus is involved in the regulation of mitochondrial dynamics, biogenesis, and inheritance. We expect that the uniform nomenclature will facilitate future studies on mitochondrial membrane architecture and dynamics.

Alkhaja
A.K.
,
Jans
D.C.
,
Nikolov
M.
,
Vukotic
M.
,
Lytovchenko
O.
,
Ludewig
F.
,
Schliebs
W.
,
Riedel
D.
,
Urlaub
H.
,
Jakobs
S.
,
Deckers
M.
.
2012
.
MINOS1 is a conserved component of mitofilin complexes and required for mitochondrial function and cristae organization
.
Mol. Biol. Cell.
23
:
247
257
.
An
J.
,
Shi
J.
,
He
Q.
,
Lui
K.
,
Liu
Y.
,
Huang
Y.
,
Sheikh
M.S.
.
2012
.
CHCM1/CHCHD6, novel mitochondrial protein linked to regulation of mitofilin and mitochondrial cristae morphology
.
J. Biol. Chem.
287
:
7411
7426
.
Bohnert
M.
,
Wenz
L.S.
,
Zerbes
R.M.
,
Horvath
S.E.
,
Stroud
D.A.
,
von der Malsburg
K.
,
Müller
J.M.
,
Oeljeklaus
S.
,
Perschil
I.
,
Warscheid
B.
et al
.
2012
.
Role of mitochondrial inner membrane organizing system in protein biogenesis of the mitochondrial outer membrane
.
Mol. Biol. Cell.
23
:
3948
3956
.
Chacinska
A.
,
Koehler
C.M.
,
Milenkovic
D.
,
Lithgow
T.
,
Pfanner
N.
.
2009
.
Importing mitochondrial proteins: machineries and mechanisms
.
Cell.
138
:
628
644
.
Connerth
M.
,
Tatsuta
T.
,
Haag
M.
,
Klecker
T.
,
Westermann
B.
,
Langer
T.
.
2012
.
Intramitochondrial transport of phosphatidic acid in yeast by a lipid transfer protein
.
Science.
338
:
815
818
.
Darshi
M.
,
Mendiola
V.L.
,
Mackey
M.R.
,
Murphy
A.N.
,
Koller
A.
,
Perkins
G.A.
,
Ellisman
M.H.
,
Taylor
S.S.
.
2011
.
ChChd3, an inner mitochondrial membrane protein, is essential for maintaining crista integrity and mitochondrial function
.
J. Biol. Chem.
286
:
2918
2932
.
Davies
K.M.
,
Strauss
M.
,
Daum
B.
,
Kief
J.H.
,
Osiewacz
H.D.
,
Rycovska
A.
,
Zickermann
V.
,
Kühlbrandt
W.
.
2011
.
Macromolecular organization of ATP synthase and complex I in whole mitochondria
.
Proc. Natl. Acad. Sci. USA.
108
:
14121
14126
.
Frey
T.G.
,
Mannella
C.A.
.
2000
.
The internal structure of mitochondria
.
Trends Biochem. Sci.
25
:
319
324
.
Gabriel
K.
,
Milenkovic
D.
,
Chacinska
A.
,
Müller
J.
,
Guiard
B.
,
Pfanner
N.
,
Meisinger
C.
.
2007
.
Novel mitochondrial intermembrane space proteins as substrates of the MIA import pathway
.
J. Mol. Biol.
365
:
612
620
.
Gieffers
C.
,
Korioth
F.
,
Heimann
P.
,
Ungermann
C.
,
Frey
J.
.
1997
.
Mitofilin is a transmembrane protein of the inner mitochondrial membrane expressed as two isoforms
.
Exp. Cell Res.
232
:
395
399
.
Hackenbrock
C.R.
1968
.
Chemical and physical fixation of isolated mitochondria in low-energy and high-energy states
.
Proc. Natl. Acad. Sci. USA.
61
:
598
605
.
Harner
M.
,
Körner
C.
,
Walther
D.
,
Mokranjac
D.
,
Kaesmacher
J.
,
Welsch
U.
,
Griffith
J.
,
Mann
M.
,
Reggiori
F.
,
Neupert
W.
.
2011
.
The mitochondrial contact site complex, a determinant of mitochondrial architecture
.
EMBO J.
30
:
4356
4370
.
Head
B.P.
,
Zulaika
M.
,
Ryazantsev
S.
,
van der Bliek
A.M.
.
2011
.
A novel mitochondrial outer membrane protein, MOMA-1, that affects cristae morphology in Caenorhabditis elegans
.
Mol. Biol. Cell.
22
:
831
841
.
Hess
D.C.
,
Myers
C.L.
,
Huttenhower
C.
,
Hibbs
M.A.
,
Hayes
A.P.
,
Paw
J.
,
Clore
J.J.
,
Mendoza
R.M.
,
Luis
B.S.
,
Nislow
C.
et al
.
2009
.
Computationally driven, quantitative experiments discover genes required for mitochondrial biogenesis
.
PLoS Genet.
5
:
e1000407
.
Hoppins
S.
,
Lackner
L.
,
Nunnari
J.
.
2007
.
The machines that divide and fuse mitochondria
.
Annu. Rev. Biochem.
76
:
751
780
.
Hoppins
S.
,
Collins
S.R.
,
Cassidy-Stone
A.
,
Hummel
E.
,
Devay
R.M.
,
Lackner
L.L.
,
Westermann
B.
,
Schuldiner
M.
,
Weissman
J.S.
,
Nunnari
J.
.
2011
.
A mitochondrial-focused genetic interaction map reveals a scaffold-like complex required for inner membrane organization in mitochondria
.
J. Cell Biol.
195
:
323
340
.
Icho
T.
,
Ikeda
T.
,
Matsumoto
Y.
,
Hanaoka
F.
,
Kaji
K.
,
Tsuchida
N.
.
1994
.
A novel human gene that is preferentially transcribed in heart muscle
.
Gene.
144
:
301
306
.
Itoh
K.
,
Tamura
Y.
,
Iijima
M.
,
Sesaki
H.
.
2013
.
Effects of Fcj1-Mos1 and mitochondrial division on aggregation of mitochondrial DNA nucleoids and organelle morphology
.
Mol. Biol. Cell.
24
:
1842
1851
.
Jans
D.C.
,
Wurm
C.A.
,
Riedel
D.
,
Wenzel
D.
,
Stagge
F.
,
Deckers
M.
,
Rehling
P.
,
Jakobs
S.
.
2013
.
STED super-resolution microscopy reveals an array of MINOS clusters along human mitochondria
.
Proc. Natl. Acad. Sci. USA.
110
:
8936
8941
.
John
G.B.
,
Shang
Y.
,
Li
L.
,
Renken
C.
,
Mannella
C.A.
,
Selker
J.M.
,
Rangell
L.
,
Bennett
M.J.
,
Zha
J.
.
2005
.
The mitochondrial inner membrane protein mitofilin controls cristae morphology
.
Mol. Biol. Cell.
16
:
1543
1554
.
Körner
C.
,
Barrera
M.
,
Dukanovic
J.
,
Eydt
K.
,
Harner
M.
,
Rabl
R.
,
Vogel
F.
,
Rapaport
D.
,
Neupert
W.
,
Reichert
A.S.
.
2012
.
The C-terminal domain of Fcj1 is required for formation of crista junctions and interacts with the TOB/SAM complex in mitochondria
.
Mol. Biol. Cell.
23
:
2143
2155
.
Mun
J.Y.
,
Lee
T.H.
,
Kim
J.H.
,
Yoo
B.H.
,
Bahk
Y.Y.
,
Koo
H.S.
,
Han
S.S.
.
2010
.
Caenorhabditis elegans mitofilin homologs control the morphology of mitochondrial cristae and influence reproduction and physiology
.
J. Cell. Physiol.
224
:
748
756
.
Neupert
W.
,
Herrmann
J.M.
.
2007
.
Translocation of proteins into mitochondria
.
Annu. Rev. Biochem.
76
:
723
749
.
Odgren
P.R.
,
Toukatly
G.
,
Bangs
P.L.
,
Gilmore
R.
,
Fey
E.G.
.
1996
.
Molecular characterization of mitofilin (HMP), a mitochondria-associated protein with predicted coiled coil and intermembrane space targeting domains
.
J. Cell Sci.
109
:
2253
2264
.
Ott
C.
,
Ross
K.
,
Straub
S.
,
Thiede
B.
,
Götz
M.
,
Goosmann
C.
,
Krischke
M.
,
Mueller
M.J.
,
Krohne
G.
,
Rudel
T.
,
Kozjak-Pavlovic
V.
.
2012
.
Sam50 functions in mitochondrial intermembrane space bridging and biogenesis of respiratory complexes
.
Mol. Cell. Biol.
32
:
1173
1188
.
Palade
G.E.
1952
.
The fine structure of mitochondria
.
Anat. Rec.
114
:
427
451
.
Park
Y.U.
,
Jeong
J.
,
Lee
H.
,
Mun
J.Y.
,
Kim
J.H.
,
Lee
J.S.
,
Nguyen
M.D.
,
Han
S.S.
,
Suh
P.G.
,
Park
S.K.
.
2010
.
Disrupted-in-schizophrenia 1 (DISC1) plays essential roles in mitochondria in collaboration with Mitofilin
.
Proc. Natl. Acad. Sci. USA.
107
:
17785
17790
.
Pellegrini
L.
,
Scorrano
L.
.
2007
.
A cut short to death: Parl and Opa1 in the regulation of mitochondrial morphology and apoptosis
.
Cell Death Differ.
14
:
1275
1284
.
Perkins
G.
,
Renken
C.
,
Martone
M.E.
,
Young
S.J.
,
Ellisman
M.
,
Frey
T.
.
1997
.
Electron tomography of neuronal mitochondria: three-dimensional structure and organization of cristae and membrane contacts
.
J. Struct. Biol.
119
:
260
272
.
Rabl
R.
,
Soubannier
V.
,
Scholz
R.
,
Vogel
F.
,
Mendl
N.
,
Vasiljev-Neumeyer
A.
,
Körner
C.
,
Jagasia
R.
,
Keil
T.
,
Baumeister
W.
et al
.
2009
.
Formation of cristae and crista junctions in mitochondria depends on antagonism between Fcj1 and Su e/g
.
J. Cell Biol.
185
:
1047
1063
.
Rossi
M.N.
,
Carbone
M.
,
Mostocotto
C.
,
Mancone
C.
,
Tripodi
M.
,
Maione
R.
,
Amati
P.
.
2009
.
Mitochondrial localization of PARP-1 requires interaction with mitofilin and is involved in the maintenance of mitochondrial DNA integrity
.
J. Biol. Chem.
284
:
31616
31624
.
Schatz
G.
1996
.
The protein import system of mitochondria
.
J. Biol. Chem.
271
:
31763
31766
.
Sesaki
H.
,
Jensen
R.E.
.
2004
.
Ugo1p links the Fzo1p and Mgm1p GTPases for mitochondrial fusion
.
J. Biol. Chem.
279
:
28298
28303
.
van der Laan
M.
,
Bohnert
M.
,
Wiedemann
N.
,
Pfanner
N.
.
2012
.
Role of MINOS in mitochondrial membrane architecture and biogenesis
.
Trends Cell Biol.
22
:
185
192
.
Varabyova
A.
,
Topf
U.
,
Kwiatkowska
P.
,
Wrobel
L.
,
Kaus-Drobek
M.
,
Chacinska
A.
.
2013
.
Mia40 and MINOS act in parallel with Ccs1 in the biogenesis of mitochondrial Sod1
.
FEBS J.
280
:
4943
4959
.
Vogel
F.
,
Bornhövd
C.
,
Neupert
W.
,
Reichert
A.S.
.
2006
.
Dynamic subcompartmentalization of the mitochondrial inner membrane
.
J. Cell Biol.
175
:
237
247
.
Vögtle
F.N.
,
Burkhart
J.M.
,
Rao
S.
,
Gerbeth
C.
,
Hinrichs
J.
,
Martinou
J.C.
,
Chacinska
A.
,
Sickmann
A.
,
Zahedi
R.P.
,
Meisinger
C.
.
2012
.
Intermembrane space proteome of yeast mitochondria
.
Mol. Cell. Proteomics.
11
:
1840
1852
.
von der Malsburg
K.
,
Müller
J.M.
,
Bohnert
M.
,
Oeljeklaus
S.
,
Kwiatkowska
P.
,
Becker
T.
,
Loniewska-Lwowska
A.
,
Wiese
S.
,
Rao
S.
,
Milenkovic
D.
et al
.
2011
.
Dual role of mitofilin in mitochondrial membrane organization and protein biogenesis
.
Dev. Cell.
21
:
694
707
.
Wang
Q.
,
Liu
Y.
,
Zou
X.
,
Wang
Q.
,
An
M.
,
Guan
X.
,
He
J.
,
Tong
Y.
,
Ji
J.
.
2008
.
The hippocampal proteomic analysis of senescence-accelerated mouse: implications of Uchl3 and mitofilin in cognitive disorder and mitochondria dysfunction in SAMP8
.
Neurochem. Res.
33
:
1776
1782
.
Weber
T.A.
,
Koob
S.
,
Heide
H.
,
Wittig
I.
,
Head
B.
,
van der Bliek
A.
,
Brandt
U.
,
Mittelbronn
M.
,
Reichert
A.S.
.
2013
.
APOOL is a cardiolipin-binding constituent of the Mitofilin/MINOS protein complex determining cristae morphology in mammalian mitochondria
.
PLoS ONE.
8
:
e63683
.
Werner
S.
,
Neupert
W.
.
1972
.
Functional and biogenetical heterogeneity of the inner membrane of rat-liver mitochondria
.
Eur. J. Biochem.
25
:
379
396
.
Wurm
C.A.
,
Jakobs
S.
.
2006
.
Differential protein distributions define two sub-compartments of the mitochondrial inner membrane in yeast
.
FEBS Lett.
580
:
5628
5634
.
Xie
J.
,
Marusich
M.F.
,
Souda
P.
,
Whitelegge
J.
,
Capaldi
R.A.
.
2007
.
The mitochondrial inner membrane protein mitofilin exists as a complex with SAM50, metaxins 1 and 2, coiled-coil-helix coiled-coil-helix domain-containing protein 3 and 6 and DnaJC11
.
FEBS Lett.
581
:
3545
3549
.
Zerbes
R.M.
,
Bohnert
M.
,
Stroud
D.A.
,
von der Malsburg
K.
,
Kram
A.
,
Oeljeklaus
S.
,
Warscheid
B.
,
Becker
T.
,
Wiedemann
N.
,
Veenhuis
M.
et al
.
2012
.
Role of MINOS in mitochondrial membrane architecture: cristae morphology and outer membrane interactions differentially depend on mitofilin domains
.
J. Mol. Biol.
422
:
183
191
.
Zick
M.
,
Rabl
R.
,
Reichert
A.S.
.
2009
.
Cristae formation-linking ultrastructure and function of mitochondria
.
Biochim. Biophys. Acta.
1793
:
5
19
.
This article is distributed under the terms of an Attribution–Noncommercial–Share Alike–No Mirror Sites license for the first six months after the publication date (see http://www.rupress.org/terms). After six months it is available under a Creative Commons License (Attribution–Noncommercial–Share Alike 3.0 Unported license, as described at http://creativecommons.org/licenses/by-nc-sa/3.0/).