Skip to Main Content



  • Cover Image

    Cover Image

    issue cover

    Cover picture: Extracellular view of μ-conotoxin GIIIA binding in the outer pore of the Nav1 channel. Dark green, red, light green, orange, and cyan dots show, respectively, centers of the charged moieties in key basic residues K9, K11, R13, K16, and R19. The flexible side chains establish various specific contacts with the channel acidic residues, whereas the toxin backbone (orange rod) preserves its position and orientation (see research article by Korkosh et al., 231–244).

  • PDF Icon PDF LinkTable of Contents
  • PDF Icon PDF LinkEditorial Board
ISSN 0022-1295
EISSN 1540-7748
In this Issue

Generally Physiological

Research Articles

Voltage dependence of permeation enhances Ca2+ influx through CaV2.2 channels relative to that of other ions at depolarized voltages.

C-type inactivation in K+ channels is enhanced by external Ca2+ or La3+, consistent with a mechanism which involves dilation of the outer pore.

Analyses of toxin binding to a homology model of Nav1.4 indicate similar folding of the outer pore region in eukaryotic and prokaryotic sodium channels.

The selectivity of acid-sensing ion channels to cations depends on interactions with binding sites both within the pore and in the outer vestibule.

Fluc channels protect bacteria from accumulating F in acidic environments.


Cardiac ryanodine receptors (RyR2) from humans, rats, and sheep show differential sensitivity to calcium and magnesium, with regulation of human RyR2 resembling that of sheep more than that of rat.

Close Modal
This Feature Is Available To Subscribers Only

Sign In or Create an Account

Close Modal
Close Modal