Skip Nav Destination
Close Modal
Update search
Filter
- Title
- Author
- Author Affiliations
- Full Text
- Abstract
- Keyword
- DOI
- ISBN
- EISBN
- ISSN
- EISSN
- Issue
- Volume
- References
Filter
- Title
- Author
- Author Affiliations
- Full Text
- Abstract
- Keyword
- DOI
- ISBN
- EISBN
- ISSN
- EISSN
- Issue
- Volume
- References
Filter
- Title
- Author
- Author Affiliations
- Full Text
- Abstract
- Keyword
- DOI
- ISBN
- EISBN
- ISSN
- EISSN
- Issue
- Volume
- References
Filter
- Title
- Author
- Author Affiliations
- Full Text
- Abstract
- Keyword
- DOI
- ISBN
- EISBN
- ISSN
- EISSN
- Issue
- Volume
- References
Filter
- Title
- Author
- Author Affiliations
- Full Text
- Abstract
- Keyword
- DOI
- ISBN
- EISBN
- ISSN
- EISSN
- Issue
- Volume
- References
Filter
- Title
- Author
- Author Affiliations
- Full Text
- Abstract
- Keyword
- DOI
- ISBN
- EISBN
- ISSN
- EISSN
- Issue
- Volume
- References
NARROW
Format
Journal
Article Type
Date
1-2 of 2
Berit Jungnickel
Close
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
Sort by
Journal Articles
Journal:
Journal of Experimental Medicine
Journal of Experimental Medicine (2000) 192 (12): 1833–1840.
Published: 18 December 2000
Abstract
Somatic hypermutation specifically modifies rearranged immunoglobulin (Ig) genes in germinal center (GC) B cells. However, the bcl-6 gene can also acquire somatic mutations during the GC reaction, indicating that certain non-Ig genes can be targeted by the somatic hypermutation machinery. The CD95 gene, implicated in negative selection of B lymphocytes in GCs, is specifically expressed by GC B cells and was recently identified as a tumor suppressor gene being frequently mutated in (post) GC B cell lymphomas. In this study, the 5′ region (5′R) and/or the last exon coding for the death domain (DD) of the CD95 gene were investigated in naive, GC, and memory B cells from seven healthy donors. About 15% of GC and memory, but not naive, B cells carried mutations within the 5′R (mutation frequency 2.5 × 10 −4 per basepair). Mutations within the DD were very rare but could be efficiently selected by inducing CD95-mediated apoptosis: in 22 apoptosis-resistant cells, 12 DD mutations were found. These results indicate that human B cells can acquire somatic mutations of the CD95 gene during the GC reaction, which potentially confers apoptosis resistance and may counteract negative selection through the CD95 pathway.
Journal Articles
Berit Jungnickel, Andrea Staratschek-Jox, Andreas Bräuninger, Tilmann Spieker, Jürgen Wolf, Volker Diehl, Martin-Leo Hansmann, Klaus Rajewsky, Ralf Küppers
Journal:
Journal of Experimental Medicine
Journal of Experimental Medicine (2000) 191 (2): 395–402.
Published: 17 January 2000
Abstract
Members of the nuclear factor (NF)-κB family of transcription factors play a crucial role in cellular activation, immune responses, and oncogenesis. In most cells, they are kept inactive in the cytosol by complex formation with members of the inhibitor of NF-κB (IκB) family, whose degradation activates NF-κB in response to diverse stimuli. In Hodgkin's lymphoma (HL), high constitutive nuclear activity of NF-κB is characteristic of the malignant Hodgkin and Reed-Sternberg (H/RS) cells, which occur at low number in a background of nonneoplastic inflammatory cells. In single H/RS cells micromanipulated from histological sections of HL, we detect clonal deleterious somatic mutations in the IκBα gene in two of three Epstein-Barr virus (EBV)-negative cases but not in two EBV-positive cases (in which a viral oncogene may account for NF-κB activation). There was no evidence for IκBα mutations in two non-HL entities or in normal germinal center B cells. This study establishes deleterious IκBα mutations as the first recurrent genetic defect found in H/RS cells, indicating a role of IκBα defects in the pathogenesis of HL and implying that IκBα is a tumor suppressor gene.