Skip to Main Content
Skip Nav Destination
Article navigation

The crucial immunological function of the classical human major histocompatibility complex (MHC) class I molecules, human histocompatibility leukocyte antigen (HLA)-A, -B, and -C, is the presentation of peptides to T cells. A secondary function is the inhibition of natural killer (NK) cells, mediated by binding of class I molecules to NK receptors. In contrast, the function of the nonclassical human MHC class I molecules, HLA-E, -F, and -G, is still a mystery. The specific expression of HLA-G in placental trophoblast suggests an important role for this molecule in the immunological interaction between mother and child. The fetus, semiallograft by its genotype, escapes maternal allorecognition by downregulation of HLA-A and HLA-B molecules at this interface. It has been suggested that the maternal NK recognition of this downregulation is balanced by the expression of HLA-G, thus preventing damage to the placenta. Here, we describe the partial inhibition of NK lysis of the MHC class I negative cell line LCL721.221 upon HLA-G transfection. We present three NK lines that are inhibited via the interaction of their NKAT3 receptor with HLA-G and with HLA-Bw4 molecules. Inhibition can be blocked by the anti-NKAT3 antibody 5.133. In conclusion, NK inhibition by HLA-G via NKAT3 may contribute to the survival of the fetal semiallograft in the mother during pregnancy.

You do not currently have access to this content.
Don't already have an account? Register

or Create an Account

Close Modal
Close Modal