MHC class II molecules and invariant chain assemble at a neutral pH in the endoplasmic reticulum and are transported to a low pH compartment where the invariant chain is trimmed to the class II–associated invariant chain peptide (CLIP). For many major histocompatibility complex class II molecules, DM is required for rapid removal of CLIP, which allows binding of antigenic peptides. Since I-Ag7 confers susceptibility to type I diabetes in NOD mice, the biochemical requirements for peptide loading were examined using soluble I-Ag7 expressed in insect cells. I-Ag7 formed long-lived complexes with naturally processed peptides from transferrin and albumin, whereas several peptides that represent T cell epitopes of islet autoantigens were poor binders. I-Ag7–peptide complexes were not sodium dodecyl sulfate (SDS) resistant, indicating that SDS sensitivity may be an intrinsic property of I-Ag7. Complexes of I-Ag7 and CLIP formed at a neutral pH, but rapidly dissociated at pH 5. This rapid dissociation was due to a poor fit of M98 of CLIP in the P9 pocket of I-Ag7, since substitution of M98 by a negatively charged residue greatly enhanced the stability of the complex. These biochemical properties of I-Ag7 result in the rapid generation of empty molecules at an endosomal pH and have a global effect on peptide binding by I-Ag7.
pH-dependent Peptide Binding Properties of the Type I Diabetes–associated I-Ag7 Molecule: Rapid Release of CLIP at an Endosomal pH
Address correspondence to Kai W. Wucherpfennig, Department of Cancer Immunology and AIDS, Dana-Farber Cancer Institute, 44 Binney St., Boston MA 02115. Phone: 617-632-3086; Fax: 617-632-2662; E-mail: [email protected]
D.H.F. Hausmann's present address is Universität Rostock, Klinik fur Innere Medizin, Abteilung f ür Gastroenterologie, Ernst-Heydemann Str. 6, 18055 Rostock, Germany, and S. Hausmann's present address is Universität Rostock, Institut für Medizinische Biochemie, Schillingallee 70, 18057 Rostock, Germany.
D.H.F. Hausmann and B. Yu contributed equally to this study.
Dorothee H.F. Hausmann, Bei Yu, Stefan Hausmann, Kai W. Wucherpfennig; pH-dependent Peptide Binding Properties of the Type I Diabetes–associated I-Ag7 Molecule: Rapid Release of CLIP at an Endosomal pH . J Exp Med 7 June 1999; 189 (11): 1723–1734. doi: https://doi.org/10.1084/jem.189.11.1723
Download citation file:
Sign in
Client Account
Sign in via your Institution
Sign in via your InstitutionSuggested Content
Email alerts
Advertisement