Skip Nav Destination
Close Modal
Update search
Filter
- Title
- Author
- Author Affiliations
- Full Text
- Abstract
- Keyword
- DOI
- ISBN
- EISBN
- ISSN
- EISSN
- Issue
- Volume
- References
Filter
- Title
- Author
- Author Affiliations
- Full Text
- Abstract
- Keyword
- DOI
- ISBN
- EISBN
- ISSN
- EISSN
- Issue
- Volume
- References
Filter
- Title
- Author
- Author Affiliations
- Full Text
- Abstract
- Keyword
- DOI
- ISBN
- EISBN
- ISSN
- EISSN
- Issue
- Volume
- References
Filter
- Title
- Author
- Author Affiliations
- Full Text
- Abstract
- Keyword
- DOI
- ISBN
- EISBN
- ISSN
- EISSN
- Issue
- Volume
- References
Filter
- Title
- Author
- Author Affiliations
- Full Text
- Abstract
- Keyword
- DOI
- ISBN
- EISBN
- ISSN
- EISSN
- Issue
- Volume
- References
Filter
- Title
- Author
- Author Affiliations
- Full Text
- Abstract
- Keyword
- DOI
- ISBN
- EISBN
- ISSN
- EISSN
- Issue
- Volume
- References
NARROW
Format
Journal
Article Type
Date
1-6 of 6
Y Kanai
Close
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
Sort by
Journal Articles
Journal:
Journal of Cell Biology
Journal of Cell Biology (1998) 141 (1): 51–59.
Published: 06 April 1998
Abstract
Cytoplasmic dynein, a minus end–directed, microtubule-based motor protein, is thought to drive the movement of membranous organelles and chromosomes. It is a massive complex that consists of multiple polypeptides. Among these polypeptides, the cytoplasmic dynein heavy chain (cDHC) constitutes the major part of this complex. To elucidate the function of cytoplasmic dynein, we have produced mice lacking cDHC by gene targeting. cDHC −/− embryos were indistinguishable from cDHC +/− or cDHC +/+ littermates at the blastocyst stage. However, no cDHC −/− embryos were found at 8.5 d postcoitum. When cDHC −/− blastocysts were cultured in vitro, they showed interesting phenotypes. First, the Golgi complex became highly vesiculated and distributed throughout the cytoplasm. Second, endosomes and lysosomes were not concentrated near the nucleus but were distributed evenly throughout the cytoplasm. Interestingly, the Golgi “fragments” and lysosomes were still found to be attached to microtubules. These results show that cDHC is essential for the formation and positioning of the Golgi complex. Moreover, cDHC is required for cell proliferation and proper distribution of endosomes and lysosomes. However, molecules other than cDHC might mediate attachment of the Golgi complex and endosomes/lysosomes to microtubules.
Journal Articles
Journal:
Journal of Cell Biology
Journal of Cell Biology (1996) 133 (3): 667–681.
Published: 01 May 1996
Abstract
The different mRNA isoforms of the mouse Sox17 gene were isolated from adult mouse testis cDNAs. One form (referred to as form Sox17) encodes an Sry-related protein of 419 amino acids containing a single high mobility group box near the NH2-terminus, while the other form (referred to as form t-Sox17) shows a unique mRNA isoform of the Sox17 gene with a partial deletion of the HMG box region. Analysis of genomic DNA revealed that these two isoforms were produced at least by alternative splicing of the exon corresponding to the 5' untranslated region and NH2-terminal 102 amino acids. RNA analyses in the testis revealed that form Sox17 began at the pachytene spermatocyte stage and was highly accumulated in round spermatids. Protein analyses revealed that t-Sox17 isoforms, as well as Sox17 isoforms, were translated into the protein products in the testis, although the amount of t-Sox17 products is lower in comparison to the high accumulation of t-Sox17 mRNA. By the electrophoretic mobility-shift assay and the random selection assay using recombinant Sox17 and t-Sox17 proteins, Sox17 protein is a DNA-binding protein with a similar sequence specificity to Sry and the other members of Sox family proteins, while t-Sox17 shows no apparent DNA-binding activity. Moreover, by a cotransfection experiment using a luciferase reporter gene, Sox17 could stimulate transcription through its binding site, but t-Sox17 had little effect on reporter gene expression. Thus, these findings suggest that Sox17 may function as a transcriptional activator in the premeiotic germ cells, and that a splicing switch into t-Sox17 may lead to the loss of its function in the postmeiotic germ cells.
Journal Articles
Journal:
Journal of Cell Biology
Journal of Cell Biology (1996) 132 (4): 667–679.
Published: 15 February 1996
Abstract
In mature neurons, tau is abundant in axons, whereas microtubule-associated protein 2 (MAP2) and MAP2C are specifically localized in dendrites. Known mechanisms involved in the compartmentalization of these cytoskeletal proteins include the differential localization of mRNA (MAP2 mRNA in dendrites, MAP2C mRNA in cell body, and Tau mRNA in proximal axon revealed by in situ hybridization) (Garner, C.C., R.P. Tucker, and A. Matus. 1988. Nature (Lond.). 336:674-677; Litman, P., J. Barg, L. Rindzooski, and I. Ginzburg. 1993. Neuron. 10:627-638), suppressed transit of MAP2 into axons (revealed by cDNA transfection into neurons) (Kanai, Y., and N. Hirokawa. 1995. Neuron. 14:421-432), and differential turnover of MAP2 in axons vs dendrites (Okabe, S., and N. Hirokawa. 1989. Proc. Natl. Acad. Sci. USA. 86:4127-4131). To investigate whether differential turnover of MAPs contributes to localization of other major MAPs in general, we microinjected biotinylated tau, MAP2C, or MAP2 into mature spinal cord neurons in culture (approximately 3 wk) and then analyzed their fates by antibiotin immunocytochemistry. Initially, each was detected in axons and dendrites, although tau persisted only in axons, whereas MAP2C and MAP2 were restricted to cell bodies and dendrites. Injected MAP2C and MAP2 bound to dendritic microtubules more firmly than to microtubules in axons, while injected tau bound to axonal microtubules more firmly than to microtubules in dendrites. Thus, beyond contributions from mRNA localization and selective axonal transport, compartmentalization of each of the three major MAPs occurs through local differential turnover.
Journal Articles
Journal:
Journal of Cell Biology
Journal of Cell Biology (1995) 129 (2): 411–429.
Published: 15 April 1995
Abstract
Neurofilaments are the major cytoskeletal elements in the axon that take highly ordered structures composed of parallel arrays of 10-nm filaments linked to each other with frequent cross-bridges, and they are believed to maintain a highly polarized neuronal cell shape. Here we report the function of rat NF-M in this characteristic neurofilament assembly. Transfection experiments were done in an insect Sf9 cell line lacking endogenous intermediate filaments. NF-L and NF-M coassemble to form bundles of 10-nm filaments packed in a parallel manner with frequent cross-bridges resembling the neurofilament domains in the axon when expressed together in Sf9 cells. Considering the fact that the expression of either NF-L or NF-M alone in these cells results in neither formation of any ordered network of 10-nm filaments nor cross-bridge structures, NF-M plays a crucial role in this parallel filament assembly. In the case of NF-H the carboxyl-tail domain has been shown to constitute the cross-bridge structures. The similarity in molecular architecture between NF-M and NF-H suggests that the carboxyl-terminal tail domain of NF-M also constitutes cross-bridges. To examine this and to further investigate the function of the carboxyl-terminal tail domain of NF-M, we made various deletion mutants that lacked part of their tail domains, and we expressed these with NF-L. From this deletion mutant analysis, we conclude that the carboxyl-terminal tail domain of NF-M has two distinct functions. First, it is the structural component of cross-bridges, and these cross-bridges serve to control the spacing between core filaments. Second, the portion of the carboxyl-terminal tail domain of NF-M that is directly involved in cross-bridge formation affects the core filament assembly by helping them to elongate longitudinally so that they become straight.
Journal Articles
Journal:
Journal of Cell Biology
Journal of Cell Biology (1993) 120 (2): 451–465.
Published: 15 January 1993
Abstract
MAP2C is a microtubule-associated protein abundant in immature nerve cells. We isolated a cDNA clone encoding whole mouse MAP2C of 467 amino acid residues. In fibroblasts transiently transfected with cDNA of MAP2C, interphase microtubule networks were reorganized into microtubule bundles. To reveal the dynamic properties of microtubule bundles, we analyzed the incorporation sites of exogenously introduced tubulin by microinjection of biotin-labeled tubulin and the turnover rate of microtubule bundles by photoactivation of caged fluorescein-labeled tubulin. The injected biotin-labeled tubulin was rapidly incorporated into distal ends of preexisting microtubule bundles, suggesting a concentration of the available ends of microtubules at this region. Although homogenous staining of microtubule bundles with antibiotin antibody was observed 2 h after injection, the photoactivation study indicated that turnover of microtubule bundles was extremely suppressed and < 10% of tubulin molecules would be exchanged within 1 h. Multiple photoactivation experiments provided evidence that neither catastrophic disassembly at the distal ends of bundles nor concerted disassembly due to treadmilling at the proximal ends could explain the observed rapid incorporation of exogenously introduced tubulin molecules. We conclude that microtubules bundled by MAP2C molecules are very stable while the abrupt increase of free tubulin molecules by microinjection results in rapid assembly from the distal ends within the bundles as well as free nucleation of small microtubules which are progressively associated laterally with preexisting microtubule bundles. This is the first detailed study of the function of MAPs on the dynamics of microtubules in vivo.
Journal Articles
Journal:
Journal of Cell Biology
Journal of Cell Biology (1989) 109 (3): 1173–1184.
Published: 01 September 1989
Abstract
Tau proteins are a class of low molecular mass microtubule-associated proteins that are specifically expressed in the nervous system. A cDNA clone of adult rat tau was isolated and sequenced. To analyze functions of tau proteins in vivo, we carried out transfection experiments. A fibroblast cell line, which was transfected with the cDNA, expressed three bands of tau, while six bands were expressed in rat brain. After dephosphorylation, one of the three bands disappeared, demonstrating directly that phosphorylation was involved in the multiplicity of tau. Morphologically, we observed a thick bundle formation of microtubules in the transiently and stably tau-gene-transfected cells. In addition, we found that the production of tubulin was prominently enhanced in the stably transfected cells. Thus, we suppose that tau proteins promote polymerization of tubulin, form bundles of microtubules in vivo, and play important roles in growing and maintaining nerve cell processes.