Skip Nav Destination
Close Modal
Update search
Filter
- Title
- Author
- Author Affiliations
- Full Text
- Abstract
- Keyword
- DOI
- ISBN
- EISBN
- ISSN
- EISSN
- Issue
- Volume
- References
Filter
- Title
- Author
- Author Affiliations
- Full Text
- Abstract
- Keyword
- DOI
- ISBN
- EISBN
- ISSN
- EISSN
- Issue
- Volume
- References
Filter
- Title
- Author
- Author Affiliations
- Full Text
- Abstract
- Keyword
- DOI
- ISBN
- EISBN
- ISSN
- EISSN
- Issue
- Volume
- References
Filter
- Title
- Author
- Author Affiliations
- Full Text
- Abstract
- Keyword
- DOI
- ISBN
- EISBN
- ISSN
- EISSN
- Issue
- Volume
- References
Filter
- Title
- Author
- Author Affiliations
- Full Text
- Abstract
- Keyword
- DOI
- ISBN
- EISBN
- ISSN
- EISSN
- Issue
- Volume
- References
Filter
- Title
- Author
- Author Affiliations
- Full Text
- Abstract
- Keyword
- DOI
- ISBN
- EISBN
- ISSN
- EISSN
- Issue
- Volume
- References
NARROW
Format
Journal
Article Type
Date
1-2 of 2
U M Wewer
Close
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
Sort by
Journal Articles
Journal:
Journal of Cell Biology
Journal of Cell Biology (1996) 134 (6): 1483–1497.
Published: 15 September 1996
Abstract
Laminin (laminin-1; alpha 1-beta 1-gamma 1) is known to promote myoblast proliferation, fusion, and myotube formation. Merosin (laminin-2 and -4; alpha 2-beta 1/beta 2-gamma 1) is the predominant laminin variant in skeletal muscle basement membranes; genetic defects affecting its structure or expression are the causes of some types of congenital muscular dystrophy. However, the precise nature of the functions of merosin in muscle remain unknown. We have developed an in vitro system that exploits human RD and mouse C2C12 myoblastic cell lines and their clonal variants to study the roles of merosin and laminin in myogenesis. In the parental cells, which fuse efficiently to multinucleated myotubes, merosin expression is upregulated as a function of differentiation while laminin expression is downregulated. Cells from fusion-deficient clones do not express either protein, but laminin or merosin added to the culture medium induced their fusion. Clonal variants which fuse, but form unstable myotubes, express laminin but not merosin. Exogenous merosin converted these myotubes to a stable phenotype, while laminin had no effect. Myotube instability was corrected most efficiently by transfection of the merosin-deficient cells with the merosin alpha 2 chain cDNA. Finally, merosin appears to promote myotube stability by preventing apoptosis. Hence, these studies identify novel biological functions for merosin in myoblast fusion and muscle cell survival; furthermore, these explain some of the pathogenic events observed in congenital muscular dystrophy caused by merosin deficiency and provide in vitro models to further investigate the molecular mechanisms of this disease.
Journal Articles
Journal:
Journal of Cell Biology
Journal of Cell Biology (1994) 127 (6): 1767–1775.
Published: 15 December 1994
Abstract
Tetranectin is a protein shared by the blood and the extracellular matrix. Tetranectin is composed of four identical, noncovalently bound polypeptides each with a molecular mass of approximately 21 kD. There is some evidence that tetranectin may be involved in fibrinolysis and proteolysis during tissue remodeling, but its precise biological function is not known. Tetranectin is enriched in the cartilage of the shark, but the gene expression pattern in the mammalian skeletal system has not been determined. In the present study we have examined the expression pattern and putative function of tetranectin during osteogenesis. In the newborn mouse, strong tetranectin immunoreactivity was found in the newly formed woven bone around the cartilage anlage in the future bone marrow and along the periosteum forming the cortex. No tetranectin immunoreactivity was found in the proliferating and hypertrophic cartilage or in the surrounding skeletal muscle. Using an in vitro mineralizing system, we examined osteoblastic cells at different times during their growth and differentiation. Tetranectin mRNA appeared in the cultured osteoblastic cells in parallel with mineralization, in a pattern similar to that of bone sialoprotein, which is regarded as one of the late bone differentiation markers. To explore the putative biological role of tetranectin in osteogenesis we established stably transfected cell lines (PC12-tet) overexpressing recombinant tetranectin as evidenced by Northern and Western blot analysis and immunoprecipitation. Both control PC12 cells and PC12-tet cells injected into nude mice produced tumors containing bone material, as evidenced by von Kossa staining for calcium and immunostaining with bone sialoprotein and alkaline phosphatase antiserum. Nude mice tumors established from PC12-tet cells contained approximately fivefold more bone material than those produced by the untransfected PC12 cell line or by the PC12 cells transfected with the expression vector with no insert (Mann Whitney rank sum test, p < 0.01), supporting the notion that tetranectin may play an important direct and/or indirect role during osteogenesis. In conclusion, we have established a potential role for tetranectin as a bone matrix protein expressed in time and space coincident with mineralization in vivo and in vitro.