Skip Nav Destination
Close Modal
Update search
Filter
- Title
- Author
- Author Affiliations
- Full Text
- Abstract
- Keyword
- DOI
- ISBN
- EISBN
- ISSN
- EISSN
- Issue
- Volume
- References
Filter
- Title
- Author
- Author Affiliations
- Full Text
- Abstract
- Keyword
- DOI
- ISBN
- EISBN
- ISSN
- EISSN
- Issue
- Volume
- References
Filter
- Title
- Author
- Author Affiliations
- Full Text
- Abstract
- Keyword
- DOI
- ISBN
- EISBN
- ISSN
- EISSN
- Issue
- Volume
- References
Filter
- Title
- Author
- Author Affiliations
- Full Text
- Abstract
- Keyword
- DOI
- ISBN
- EISBN
- ISSN
- EISSN
- Issue
- Volume
- References
Filter
- Title
- Author
- Author Affiliations
- Full Text
- Abstract
- Keyword
- DOI
- ISBN
- EISBN
- ISSN
- EISSN
- Issue
- Volume
- References
Filter
- Title
- Author
- Author Affiliations
- Full Text
- Abstract
- Keyword
- DOI
- ISBN
- EISBN
- ISSN
- EISSN
- Issue
- Volume
- References
NARROW
Format
Journal
Article Type
Date
1-1 of 1
S L Meyer
Close
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
Sort by
Journal Articles
Journal:
Journal of Cell Biology
Journal of Cell Biology (1988) 106 (3): 773–778.
Published: 01 March 1988
Abstract
Nuclear migration was studied in germinating conidia of a temperature-sensitive mutant of the fungus Aspergillus nidulans. At the restrictive temperature motility was demonstrably impaired because significantly fewer nuclei migrated into the germ tube relative to a population of similarly sized germlings grown at the permissive temperature. Further comparison of these populations showed that the mutant was leaky in that an increasing number of nuclei migrated as the total nuclear content increased in each germling. The restrictive temperature also induced elevated mitotic asynchrony and increased numbers of nuclei per germling. Serial section-based reconstruction of the microtubules in a freeze-substituted germling showed that they were not attached to the nucleus-associated organelles, were approximately parallel to the long axis of the germ tube, and seemed to be randomly distributed between the central and peripheral cytoplasm. Five germlings from each temperature were selected for quantitative analysis of cytoplasmic microtubules. All 10 germlings had typical nuclear migration phenotypes. No significant temperature-related difference in microtubule density was found. We conclude that inhibition of nuclear migration in the mutant is the effect of some defect other than the failure of cytoplasmic microtubules to assemble to their normal population density. We also suggest that nuclear motility is not dependent on mitosis-related microtubules.