Skip Nav Destination
Close Modal
Update search
Filter
- Title
- Author
- Author Affiliations
- Full Text
- Abstract
- Keyword
- DOI
- ISBN
- EISBN
- ISSN
- EISSN
- Issue
- Volume
- References
Filter
- Title
- Author
- Author Affiliations
- Full Text
- Abstract
- Keyword
- DOI
- ISBN
- EISBN
- ISSN
- EISSN
- Issue
- Volume
- References
Filter
- Title
- Author
- Author Affiliations
- Full Text
- Abstract
- Keyword
- DOI
- ISBN
- EISBN
- ISSN
- EISSN
- Issue
- Volume
- References
Filter
- Title
- Author
- Author Affiliations
- Full Text
- Abstract
- Keyword
- DOI
- ISBN
- EISBN
- ISSN
- EISSN
- Issue
- Volume
- References
Filter
- Title
- Author
- Author Affiliations
- Full Text
- Abstract
- Keyword
- DOI
- ISBN
- EISBN
- ISSN
- EISSN
- Issue
- Volume
- References
Filter
- Title
- Author
- Author Affiliations
- Full Text
- Abstract
- Keyword
- DOI
- ISBN
- EISBN
- ISSN
- EISSN
- Issue
- Volume
- References
NARROW
Format
Journal
Article Type
Date
1-3 of 3
R Wright
Close
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
Sort by
Journal Articles
Journal:
Journal of Cell Biology
Journal of Cell Biology (2001) 155 (4): 593–604.
Published: 05 November 2001
Abstract
Sec6/8 complex regulates delivery of exocytic vesicles to plasma membrane docking sites, but how it is recruited to specific sites in the exocytic pathway is poorly understood. We identified an Sec6/8 complex on trans-Golgi network (TGN) and plasma membrane in normal rat kidney (NRK) cells that formed either fibroblast- (NRK-49F) or epithelial-like (NRK-52E) intercellular junctions. At both TGN and plasma membrane, Sec6/8 complex colocalizes with exocytic cargo protein, vesicular stomatitis virus G protein (VSVG)-tsO45. Newly synthesized Sec6/8 complex is simultaneously recruited from the cytosol to both sites. However, brefeldin A treatment inhibits recruitment to the plasma membrane and other treatments that block exocytosis (e.g., expression of kinase-inactive protein kinase D and low temperature incubation) cause accumulation of Sec6/8 on the TGN, indicating that steady-state distribution of Sec6/8 complex depends on continuous exocytic vesicle trafficking. Addition of antibodies specific for TGN- or plasma membrane–bound Sec6/8 complexes to semiintact NRK cells results in cargo accumulation in a perinuclear region or near the plasma membrane, respectively. These results indicate that Sec6/8 complex is required for several steps in exocytic transport of vesicles between TGN and plasma membrane.
Journal Articles
Journal:
Journal of Cell Biology
Journal of Cell Biology (1995) 131 (1): 81–94.
Published: 01 October 1995
Abstract
Elevated levels of certain membrane proteins, including the sterol biosynthetic enzyme HMG-CoA reductase, induce proliferation of the endoplasmic reticulum. When the amounts of these proteins return to basal levels, the proliferated membranes are degraded, but the molecular details of this degradation remain unknown. We have examined the degradation of HMG-CoA reductase-induced membranes in the fission yeast, Schizosaccharomyces pombe. In this yeast, increased levels of the Saccharomyces cerevisiae HMG-CoA reductase isozyme encoded by HMG1 induced several types of membranes, including karmellae, which formed a cap of stacked membranes that partially surrounded the nucleus. When expression of HMG1 was repressed, the karmellae detached from the nucleus and formed concentric, multilayered membrane whorls that were then degraded. During the degradation process, CDCFDA-stained compartments distinct from preexisting vacuoles formed within the interior of the whorls. In addition to these compartments, particles that contained neutral lipids also formed within the whorl. As the thickness of the whorl decreased, the lipid particle became larger. When degradation was complete, only the lipid particle remained. Cycloheximide treatment did not prevent the formation of whorls. Thus, new protein synthesis was not needed for the initial stages of karmellae degradation. On the contrary, cycloheximide promoted the detachment of karmellae to form whorls, suggesting that a short lived protein may be involved in maintaining karmellae integrity. Taken together, these results demonstrate that karmellae membranes differentiated into self-degradative organelles. This process may be a common pathway by which ER membranes are turned over in cells.
Journal Articles
Journal:
Journal of Cell Biology
Journal of Cell Biology (1988) 107 (1): 101–114.
Published: 01 July 1988
Abstract
Overproduction of the enzyme 3-hydroxy-3-methylglutaryl coenzyme A (HMG-CoA) reductase in yeast resulted in striking morphological effects on the structure of intracellular membranes. Specifically, stacks of paired membranes closely associated with the nuclear envelope were observed in strains that over-produced the HMG1 isozyme, one of two isozymes for HMG-CoA reductase in yeast. These nuclear-associated, paired membranes have been named "karmellae." In strains that overproduced the HMG1 isozyme, HMG-CoA reductase was present in the karmellar layers. At mitosis, karmellae were asymmetrically segregated: the mother cells inherited all of the karmellae and the daughter cells inherited none. A membranous structure of different morphology was occasionally found in cells that overproduced the HMG2 isozyme. These observations further establish the existence of cellular mechanisms that monitor the levels of membrane proteins and compensate for changes in these levels by inducing synthesis of particular types of membrane.