Skip Nav Destination
Close Modal
Update search
Filter
- Title
- Author
- Author Affiliations
- Full Text
- Abstract
- Keyword
- DOI
- ISBN
- EISBN
- ISSN
- EISSN
- Issue
- Volume
- References
Filter
- Title
- Author
- Author Affiliations
- Full Text
- Abstract
- Keyword
- DOI
- ISBN
- EISBN
- ISSN
- EISSN
- Issue
- Volume
- References
Filter
- Title
- Author
- Author Affiliations
- Full Text
- Abstract
- Keyword
- DOI
- ISBN
- EISBN
- ISSN
- EISSN
- Issue
- Volume
- References
Filter
- Title
- Author
- Author Affiliations
- Full Text
- Abstract
- Keyword
- DOI
- ISBN
- EISBN
- ISSN
- EISSN
- Issue
- Volume
- References
Filter
- Title
- Author
- Author Affiliations
- Full Text
- Abstract
- Keyword
- DOI
- ISBN
- EISBN
- ISSN
- EISSN
- Issue
- Volume
- References
Filter
- Title
- Author
- Author Affiliations
- Full Text
- Abstract
- Keyword
- DOI
- ISBN
- EISBN
- ISSN
- EISSN
- Issue
- Volume
- References
NARROW
Format
Journal
Article Type
Date
1-6 of 6
R W Wozniak
Close
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
Sort by
Journal Articles
Journal:
Journal of Cell Biology
Journal of Cell Biology (1996) 133 (6): 1153–1162.
Published: 15 June 1996
Abstract
We have isolated a major protein constituent from a highly enriched fraction of yeast nuclear pore complexes (NPCs). The gene encoding this protein, Nup188p, was cloned, sequenced, and found to be nonessential upon deletion. Nup188p cofractionates with yeast NPCs and gives an immunofluorescent staining pattern typical of nucleoporins. Using immunoelectron microscopy, Nup188p was shown to localize to both the cytoplasmic and nucleoplasmic faces of the NPC core. There, Nup188p interacts with an integral protein of the pore membrane domain, Pom152p, and another abundant nucleoporin, Nic96p. The effects of various mutations in the NUP188 gene on the structure of the nuclear envelope and the function of the NPC were examined. While null mutants of NUP188 appear normal, other mutants allelic to NUP188 exhibit a dominant effect leading to the formation of NPC-associated nuclear envelope herniations and growth inhibition at 37 degrees C. In addition, depletion of the interacting protein Pom152p in cells lacking Nup188p resulted in severe deformations of the nuclear envelope. We suggest that Nup188p is one of a group of proteins that form the octagonal core structure of the NPC and thus functions in the structural organization of the NPC and nuclear envelope.
Journal Articles
Journal:
Journal of Cell Biology
Journal of Cell Biology (1995) 131 (5): 1133–1148.
Published: 01 December 1995
Abstract
We have taken a combined genetic and biochemical approach to identify major constituents of the yeast nuclear pore complex (NPC). A synthetic lethal screen was used to identify proteins which interact genetically with the major pore-membrane protein Pom152p. In parallel, polypeptides present in similar amounts to Pom152p in a highly enriched preparation of yeast NPCs have been characterized by direct microsequencing. These approaches have led to the identification of two novel and major nucleoporins, Nup170p and Nup157p. Both Nup170p and Nup157p are similar to each other and to an abundant mammalian nucleoporin, Nup155p (Radu, A., G. Blobel, and R. W. Wozniak. 1993. J. Cell Biol. 121: 1-9) and interestingly, nup170 mutants can be complemented with mammalian NUP155. In addition, the synthetic lethal screen identified genetic interactions between Pom152p and two other major nucleoporins, Nup188p (Nehrbass, U., S. Maguire, M. Rout, G. Blobel, and R. W. Wozniak, manuscript submitted for publication), and Nic96p (Grandi, P., V. Doye, and E. C. Hurt. 1993. EMBO J. 12: 3061-71). We have determined that together, Nup170p, Nup157p, Pom152p, Nup188p, and Nic96p comprise greater than one-fifth of the mass of the isolated yeast NPC. Examination of the genetic interactions between these proteins indicate that while deletion of either POM152, NUP170, or NUP188 alone is not lethal, pairwise combinations are. Deletion of NUP157 is also not lethal. However, nup157 null mutants, while lethal in combination with nup170 and nup188 null alleles, are not synthetically lethal with pom152 null alleles. We suggest that Nup170p and Nup157p may be part of a morphologically symmetrical but functionally distinct substructure of the yeast NPC, e.g., the nucleoplasmic and cytoplasmic rings. Finally, we observed morphological abnormalities in the nuclear envelope as a function of alterations in the expression levels of NUP170 suggesting a specific stoichiometric relationship between NPC components is required for the maintenance of normal nuclear structure.
Journal Articles
Journal:
Journal of Cell Biology
Journal of Cell Biology (1994) 125 (1): 31–42.
Published: 01 April 1994
Abstract
We have identified a concanavalin A-reactive glycoprotein of 150 kD that coenriches with isolated yeast nuclear pore complexes. Molecular cloning and sequencing of this protein revealed a single canonical transmembrane segment. Epitope tagging and localization by both immunofluorescence and immunoelectron microscopy confirmed that it is a pore membrane protein. The protein was termed POM152 (for pore membrane protein of 152 kD) on the basis of its location and cDNA-deduced molecular mass. POM152 is likely to be a type II membrane protein with its NH2-terminal region (175 residues) and its COOH-terminal region (1,142 residues) positioned on the pore side and cisternal side of the pore membrane, respectively. The proposed cisternally exposed domain contains eight repetitive motifs of approximately 24 residues. Surprisingly, POM152 deletion mutants were viable and their growth rate was indistinguishable from that of wild-type cells at temperatures between 17 and 37 degrees C. However, overproduction of POM152 inhibited cell growth. When expressed in mouse 3T3 cells, POM152 was found to be localized to the pore membrane, suggesting a conserved sorting pathway between yeast and mammals.
Journal Articles
Journal:
Journal of Cell Biology
Journal of Cell Biology (1993) 121 (1): 1–9.
Published: 01 April 1993
Abstract
We have molecularly cloned and sequenced a rat liver nuclear pore complex (NPC) protein of calculated molecular mass of 155 kD. Consistent with recently proposed nomenclature this protein is termed nucleoporin 155, or nup155. Unlike other nups that have so far been molecularly cloned and sequenced, nup155 does not contain repetitive sequence domains. It does not show similarity to the sequences of other proteins, including any nups, so far compiled in the data bases. Like other vertebrate nups which have been characterized nup155 possesses abundant (46 in total) consensus sites for various kinases. By immunoelectron microscopy, nup155 is associated with both the nucleoplasmic and the cytoplasmic aspect of the NPC and is therefore possibly a component of the symmetrically arranged NPC substructures. In mitotic cells, nup155 assumes a diffuse cytoplasmic distribution. Nup155 is among the integral of 30 proteins that were extracted from rat liver nuclear envelopes by 2.0 M urea/1.0 mM EDTA, separated from WGA-reactive proteins by WGA-Sepharose and further subfractionated by SDS-hydroxylapatite. These proteins are potential candidates for being nups.
Journal Articles
Journal:
Journal of Cell Biology
Journal of Cell Biology (1992) 119 (6): 1441–1449.
Published: 15 December 1992
Abstract
The glycoprotein gp210 is located in the "pore membrane," a specialized domain of the nuclear envelope to which the nuclear pore complex (NPC) is anchored. gp210 contains a large cisternal domain, a single transmembrane segment (TM), and a COOH-terminal, 58-amino acid residue cytoplasmic tail (CT) (Wozniak, R. W., E. Bartnik, and G. Blobel. 1989. J. Cell Biol. 108:2083-2092; Greber, U. F., A. Senior, and L. Gerace. 1990. EMBO (Eur. Mol. Biol. Organ.) J. 9:1495-1502). To locate determinants for sorting of gp210 to the pore membrane, we constructed various cDNAs coding for wild-type, mutant, and chimeric gp210, and monitored localization of the expressed protein in 3T3 cells by immunofluorescence microscopy using appropriate antibodies. The large cisternal domain of gp210 (95% of its mass) did not reveal any sorting determinants. Surprisingly, the TM of gp210 is sufficient for sorting to the pore membrane. The CT also contains a sorting determinant, but it is weaker than that of the TM. We propose specific lateral association of the transmembrane helices of two proteins to yield either a gp210 homodimer or a heterodimer of gp210 and another protein. The cytoplasmically oriented tails of these dimers may bind cooperatively to the adjacent NPCs. In addition, we demonstrate that gp210 co-localizes with cytoplasmically dispersed nucleoporins, suggesting a cytoplasmic association of these components.
Journal Articles
Journal:
Journal of Cell Biology
Journal of Cell Biology (1989) 108 (6): 2083–2092.
Published: 01 June 1989
Abstract
The complete primary structure of an integral membrane glycoprotein of the nuclear pore was deduced from the cDNA sequence. The cDNA encodes a polypeptide of 204,205 D containing a 25-residue-long signal sequence, two hydrophobic segments that could function as transmembrane segments, and 13 potential N-linked oligosaccharide addition sites. Endoglycosidase H reduces the molecular mass by approximately 9 kD suggesting that not all of these 13 sites are used. We discuss possible models for the topology of this protein in the pore membrane as well as a possible role in the formation of pores and pore complexes.