Skip Nav Destination
Close Modal
Update search
Filter
- Title
- Author
- Author Affiliations
- Full Text
- Abstract
- Keyword
- DOI
- ISBN
- EISBN
- ISSN
- EISSN
- Issue
- Volume
- References
Filter
- Title
- Author
- Author Affiliations
- Full Text
- Abstract
- Keyword
- DOI
- ISBN
- EISBN
- ISSN
- EISSN
- Issue
- Volume
- References
Filter
- Title
- Author
- Author Affiliations
- Full Text
- Abstract
- Keyword
- DOI
- ISBN
- EISBN
- ISSN
- EISSN
- Issue
- Volume
- References
Filter
- Title
- Author
- Author Affiliations
- Full Text
- Abstract
- Keyword
- DOI
- ISBN
- EISBN
- ISSN
- EISSN
- Issue
- Volume
- References
Filter
- Title
- Author
- Author Affiliations
- Full Text
- Abstract
- Keyword
- DOI
- ISBN
- EISBN
- ISSN
- EISSN
- Issue
- Volume
- References
Filter
- Title
- Author
- Author Affiliations
- Full Text
- Abstract
- Keyword
- DOI
- ISBN
- EISBN
- ISSN
- EISSN
- Issue
- Volume
- References
NARROW
Format
Journal
Article Type
Date
1-2 of 2
M van Dijk
Close
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
Sort by
Journal Articles
David Halter, Sylvia Neumann, Suzanne M. van Dijk, Jasja Wolthoorn, Ann M. de Mazière, Otilia V. Vieira, Peter Mattjus, Judith Klumperman, Gerrit van Meer, Hein Sprong
Journal:
Journal of Cell Biology
Journal of Cell Biology (2007) 179 (1): 101–115.
Published: 08 October 2007
Abstract
Glycosphingolipids are controlled by the spatial organization of their metabolism and by transport specificity. Using immunoelectron microscopy, we localize to the Golgi stack the glycosyltransferases that produce glucosylceramide (GlcCer), lactosylceramide (LacCer), and GM3. GlcCer is synthesized on the cytosolic side and must translocate across to the Golgi lumen for LacCer synthesis. However, only very little natural GlcCer translocates across the Golgi in vitro. As GlcCer reaches the cell surface when Golgi vesicular trafficking is inhibited, it must translocate across a post-Golgi membrane. Concanamycin, a vacuolar proton pump inhibitor, blocks translocation independently of multidrug transporters that are known to translocate short-chain GlcCer. Concanamycin did not reduce LacCer and GM3 synthesis. Thus, GlcCer destined for glycolipid synthesis follows a different pathway and transports back into the endoplasmic reticulum (ER) via the late Golgi protein FAPP2. FAPP2 knockdown strongly reduces GM3 synthesis. Overall, we show that newly synthesized GlcCer enters two pathways: one toward the noncytosolic surface of a post-Golgi membrane and one via the ER toward the Golgi lumen LacCer synthase.
Includes: Supplementary data
Journal Articles
R H Brakenhoff, M Gerretsen, E M Knippels, M van Dijk, H van Essen, D O Weghuis, R J Sinke, G B Snow, G A van Dongen
Journal:
Journal of Cell Biology
Journal of Cell Biology (1995) 129 (6): 1677–1689.
Published: 15 June 1995
Abstract
The E48 antigen, a putative human homologue of the 20-kD protein present in desmosomal preparations of bovine muzzle, and formerly called desmoglein III (dg4), is a promising target antigen for antibody-based therapy of squamous cell carcinoma in man. To anticipate the effect of high antibody dose treatment, and to evaluate the possible biological involvement of the antigen in carcinogenesis, we set out to molecularly characterize the antigen. A cDNA clone encoding the E48 antigen was isolated by expression cloning in COS cells. Sequence analysis revealed that the clone contained an open reading frame of 128 amino acids, encoding a core protein of 13,286 kD. Database searching showed that the E48 antigen has a high level of sequence similarity with the mouse ThB antigen, a member of the Ly-6 antigen family. Phosphatidylinositol-specific (PI-specific) phospholipase-C treatment indicated that the E48 antigen is glycosylphosphatidylinositol-anchored (GPI-anchored) to the plasma membrane. The gene encoding the E48 antigen is a single copy gene, located on human chromosome 8 in the 8q24-qter region. The expression of the gene is confined to keratinocytes and squamous tumor cells. The putative mouse homologue, the ThB antigen, originally identified as an antigen on cells of the lymphocyte lineage, was shown to be highly expressed in squamous mouse epithelia. Moreover, the ThB expression level is in keratinocytes, in contrast to that in lymphocytes, not mouse strain related. Transfection of mouse SV40-polyoma transformed mouse NIH/3T3 cells with the E48 cDNA confirmed that the antigen is likely to be involved in cell-cell adhesion.