Skip Nav Destination
Close Modal
Update search
Filter
- Title
- Author
- Author Affiliations
- Full Text
- Abstract
- Keyword
- DOI
- ISBN
- EISBN
- ISSN
- EISSN
- Issue
- Volume
- References
Filter
- Title
- Author
- Author Affiliations
- Full Text
- Abstract
- Keyword
- DOI
- ISBN
- EISBN
- ISSN
- EISSN
- Issue
- Volume
- References
Filter
- Title
- Author
- Author Affiliations
- Full Text
- Abstract
- Keyword
- DOI
- ISBN
- EISBN
- ISSN
- EISSN
- Issue
- Volume
- References
Filter
- Title
- Author
- Author Affiliations
- Full Text
- Abstract
- Keyword
- DOI
- ISBN
- EISBN
- ISSN
- EISSN
- Issue
- Volume
- References
Filter
- Title
- Author
- Author Affiliations
- Full Text
- Abstract
- Keyword
- DOI
- ISBN
- EISBN
- ISSN
- EISSN
- Issue
- Volume
- References
Filter
- Title
- Author
- Author Affiliations
- Full Text
- Abstract
- Keyword
- DOI
- ISBN
- EISBN
- ISSN
- EISSN
- Issue
- Volume
- References
NARROW
Format
Journal
Article Type
Date
1-3 of 3
M Weiss
Close
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
Sort by
Journal Articles
Johannes M. Weiss, Jonathan Sleeman, Andreas C. Renkl, Henning Dittmar, Christian C. Termeer, Sabine Taxis, Norma Howells, Martin Hofmann, Gabriele Köhler, Erwin Schöpf, Helmut Ponta, Peter Herrlich, Jan C. Simon
Journal:
Journal of Cell Biology
Journal of Cell Biology (1997) 137 (5): 1137–1147.
Published: 02 June 1997
Abstract
Upon antigen contact, epidermal Langerhans cells (LC) and dendritic cells (DC) leave peripheral organs and home to lymph nodes via the afferent lymphatic vessels and then assemble in the paracortical T cell zone and present antigen to T lymphocytes. Since splice variants of CD44 promote metastasis of certain tumors to lymph nodes, we explored the expression of CD44 proteins on migrating LC and DC. We show that upon antigen contact, LC and DC upregulate pan CD44 epitopes and epitopes encoded by variant exons v4, v5, v6, and v9. Antibodies against CD44 epitopes inhibit the emigration of LC from the epidermis, prevent binding of activated LC and DC to the T cell zones of lymph nodes, and severely inhibit their capacity to induce a delayed type hypersensitivity reaction to a skin hapten in vivo. Our results demonstrate that CD44 splice variant expression is obligatory for the migration and function of LC and DC.
Journal Articles
Journal:
Journal of Cell Biology
Journal of Cell Biology (1995) 130 (1): 169–181.
Published: 01 July 1995
Abstract
Cataract is a major ocular disease that causes blindness in many developing countries of the world. It is well established that various factors such as oxidative stress, UV, and other toxic agents can induce both in vivo and in vitro cataract formation. However, a common cellular basis for this induction has not been previously recognized. The present study of lens epithelial cell viability suggests such a general mechanism. When lens epithelial cells from a group of 20 cataract patients 12 to 94 years old were analyzed by terminal deoxynucleotidyl transferase (TdT) labeling and DNA fragmentation assays, it was found that all of these patients had apoptotic epithelial cells ranging from 4.4 to 41.8%. By contrast, in eight normal human lenses of comparable age, very few apoptotic epithelial cells were observed. We suggest that cataract patients may have deficient defense systems against factors such as oxidative stress and UV at the onset of the disease. Such stress can trigger lens epithelial cell apoptosis that then may initiate cataract development. To test this hypothesis, it is also demonstrated here that hydrogen peroxide at concentrations previously found in some cataract patients induces both lens epithelial cell apoptosis and cortical opacity. Moreover, the temporal and spatial distribution of induced apoptotic lens epithelial cells precedes development of lens opacification. These results suggest that lens epithelial cell apoptosis may be a common cellular basis for initiation of noncongenital cataract formation.
Journal Articles
Journal:
Journal of Cell Biology
Journal of Cell Biology (1993) 121 (4): 887–898.
Published: 15 May 1993
Abstract
Rat hepatoma-human fibroblast hybrids of two independent lineages containing only 8-11 human chromosomes show pleiotropic extinction of thirteen out of fifteen hepatic functions examined. Reexpression of the entire group of functions most often occurs in a block, and except for one discordant subclone, correlates with loss of human chromosome 2. The extinguished cells and their reexpressing derivatives have been examined for the expression of seven liver-enriched transcription factors. C/EBP, LAP, DBP, HNF3, and vHNF1 expression are not systematically extinguished in parallel with the hepatic functions. However, HNF1 and HNF4 show a perfect correlation with phenotype: these factors are expressed only in the cells showing pleiotropic reexpression. Since recent evidence indicates that HNF4 controls HNF1 expression, it can be proposed that the HNF4 gene is the primary target of the pleiotropic extinguisher.