Skip Nav Destination
Close Modal
Update search
Filter
- Title
- Author
- Author Affiliations
- Full Text
- Abstract
- Keyword
- DOI
- ISBN
- EISBN
- ISSN
- EISSN
- Issue
- Volume
- References
Filter
- Title
- Author
- Author Affiliations
- Full Text
- Abstract
- Keyword
- DOI
- ISBN
- EISBN
- ISSN
- EISSN
- Issue
- Volume
- References
Filter
- Title
- Author
- Author Affiliations
- Full Text
- Abstract
- Keyword
- DOI
- ISBN
- EISBN
- ISSN
- EISSN
- Issue
- Volume
- References
Filter
- Title
- Author
- Author Affiliations
- Full Text
- Abstract
- Keyword
- DOI
- ISBN
- EISBN
- ISSN
- EISSN
- Issue
- Volume
- References
Filter
- Title
- Author
- Author Affiliations
- Full Text
- Abstract
- Keyword
- DOI
- ISBN
- EISBN
- ISSN
- EISSN
- Issue
- Volume
- References
Filter
- Title
- Author
- Author Affiliations
- Full Text
- Abstract
- Keyword
- DOI
- ISBN
- EISBN
- ISSN
- EISSN
- Issue
- Volume
- References
NARROW
Format
Journal
Article Type
Date
1-1 of 1
M Rusli
Close
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
Sort by
Journal Articles
Journal:
Journal of Cell Biology
Journal of Cell Biology (1977) 72 (1): 118–132.
Published: 01 January 1977
Abstract
We have used high resolution scanning electron microscopy (SEM) to study the nuclear envelope components of isolated mouse liver nuclei. The surfaces of intact nuclei are covered by closely packed ribosomes which are distinguishable by SEM from nuclear pore complexes. After removal of nuclear membranes with the nonionic detergent Triton X-100, the pore complexes remain attached to an underlying, peripheral nuclear lamina, as described by others. The surface of this dense lamina is composed of particulate granules, 75-150 A in diameter, which are contiguous over the entire periphery. We did not observe the pore-to-pore fibril network suggested by other investigators, but such a structure might be the framework upon which the dense lamina is formed. Morphometric analysis of pores and pore complexes shows their size, structure, and density to be similar to that of other mammalian cells. In addition, several types of pore complex-associated structures, not previously reported by other electron microscope (EM) techniques, are observed by SEM. Our studies suggest that the major role of the dense lamina is associated with the distribution, stability, and perhaps, biogenesis of nuclear pore complexes. Treatment of isolated nuclei with a combination of Triton X-100 and sodium deoxycholate removes membranes, dense lamina, and nuclear pore complexes. The resulting "chromatin nuclei" retain their integrity despite the absence of any limiting peripheral structures.