Skip Nav Destination
Close Modal
Update search
Filter
- Title
- Author
- Author Affiliations
- Full Text
- Abstract
- Keyword
- DOI
- ISBN
- EISBN
- ISSN
- EISSN
- Issue
- Volume
- References
Filter
- Title
- Author
- Author Affiliations
- Full Text
- Abstract
- Keyword
- DOI
- ISBN
- EISBN
- ISSN
- EISSN
- Issue
- Volume
- References
Filter
- Title
- Author
- Author Affiliations
- Full Text
- Abstract
- Keyword
- DOI
- ISBN
- EISBN
- ISSN
- EISSN
- Issue
- Volume
- References
Filter
- Title
- Author
- Author Affiliations
- Full Text
- Abstract
- Keyword
- DOI
- ISBN
- EISBN
- ISSN
- EISSN
- Issue
- Volume
- References
Filter
- Title
- Author
- Author Affiliations
- Full Text
- Abstract
- Keyword
- DOI
- ISBN
- EISBN
- ISSN
- EISSN
- Issue
- Volume
- References
Filter
- Title
- Author
- Author Affiliations
- Full Text
- Abstract
- Keyword
- DOI
- ISBN
- EISBN
- ISSN
- EISSN
- Issue
- Volume
- References
NARROW
Format
Journal
Article Type
Date
1-4 of 4
M Pypaert
Close
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
Sort by
Journal Articles
Journal:
Journal of Cell Biology
Journal of Cell Biology (1993) 122 (3): 533–540.
Published: 01 August 1993
Abstract
HeLa cells arrested in prometaphase were pulse-labeled with [35S]methionine and chased in the absence of nocodazole to allow passage through mitosis and into G1. Transport of histocompatibility antigen (HLA) molecules to the medial- and trans-Golgi cisternae was measured by monitoring the resistance to endoglycosidase H and the acquisition of sialic acid residues, respectively. Transport to the plasma membrane was measured using neuraminidase to remove sialic acid residues on surface HLA molecules. The half-time for transport to each of these compartments was about 65-min longer in cells progressing out of mitosis than in G1 cells. This delay was only 5-min longer than the half-time for the fall in histone H1 kinase activity suggesting that inactivation of the mitotic kinase triggers the resumption of protein transport. The half-time for reassembly of the Golgi stack, measured using stereological procedures, was also 65 min, suggesting that both transport and reassembly are triggered at the same time. However, since reassembly was complete within 5 min, whereas HLA took 25 min to reach the medial-cisterna, we can conclude that the Golgi stack has reassembled by the time HLA reaches it.
Journal Articles
Journal:
Journal of Cell Biology
Journal of Cell Biology (1993) 120 (1): 5–13.
Published: 01 January 1993
Abstract
Thin, frozen sections of a HeLa cell line were double labeled with specific antibodies to localize the trans-Golgi enzyme, beta 1,4 galactosyltransferase (GalT) and the medial enzyme, N-acetylglucosaminyltransferase I (NAGT I). The latter was detected by generating a HeLa cell line stably expressing a myc-tagged version of the endogenous protein. GalT was found in the trans-cisterna and trans-Golgi network but, contrary to expectation, NAGT I was found both in the medial- and trans-cisternae, overlapping the distribution of GalT. About one third of the NAGT I and half of the GalT were found in the shared, trans-cisterna. These data show that the differences between cisternae are determined not by different sets of enzymes but by different mixtures.
Journal Articles
Journal:
Journal of Cell Biology
Journal of Cell Biology (1991) 114 (6): 1159–1166.
Published: 15 September 1991
Abstract
Receptor-mediated endocytosis is inhibited during mitosis in mammalian cells and earlier work on A431 cells suggested that one of the sites inhibited was the invagination of coated pits (Pypaert, M., J. M. Lucocq, and G. Warren. 1987. Eur. J. Cell Biol. 45: 23-29). To explore this inhibition further, we have reproduced it in broken HeLa cells. Mitotic or interphase cells were broken by freeze-thawing in liquid nitrogen and warmed in the presence of mitotic or interphase cytosol. Using a morphological assay, we found invagination to be inhibited only when mitotic cells were incubated in mitotic cytosol. This inhibition was reversed by diluting the cytosol during the incubation. Reversal was sensitive to okadaic acid, a potent phosphatase inhibitor, showing that phosphorylation was involved in the inhibition of invagination. This was confirmed using purified cdc2 kinase which alone could partially substitute for mitotic cytosol.
Journal Articles
Journal:
Journal of Cell Biology
Journal of Cell Biology (1989) 108 (3): 843–853.
Published: 01 March 1989
Abstract
Biochemical and morphological techniques were used to demonstrate the early steps in the endocytosis of transferrin in broken A431 cells. After binding 125I-transferrin, the cells were broken by scraping and then warmed. 125I-transferrin became inaccessible to exogenous anti-transferrin antibody providing a measure of the internalization process. Parallel morphological experiments using transferrin coupled to horseradish peroxidase confirmed internalization in broken cells. The process was characterized and compared with endocytosis in intact cells and showed many similar features. The system was used to show that both the appearance of new coated pits and the scission of coated pits to form coated vesicles were dependent on the addition of cytosol and ATP whereas invagination of pits was dependent on neither.