Skip Nav Destination
Close Modal
Update search
Filter
- Title
- Author
- Author Affiliations
- Full Text
- Abstract
- Keyword
- DOI
- ISBN
- EISBN
- ISSN
- EISSN
- Issue
- Volume
- References
Filter
- Title
- Author
- Author Affiliations
- Full Text
- Abstract
- Keyword
- DOI
- ISBN
- EISBN
- ISSN
- EISSN
- Issue
- Volume
- References
Filter
- Title
- Author
- Author Affiliations
- Full Text
- Abstract
- Keyword
- DOI
- ISBN
- EISBN
- ISSN
- EISSN
- Issue
- Volume
- References
Filter
- Title
- Author
- Author Affiliations
- Full Text
- Abstract
- Keyword
- DOI
- ISBN
- EISBN
- ISSN
- EISSN
- Issue
- Volume
- References
Filter
- Title
- Author
- Author Affiliations
- Full Text
- Abstract
- Keyword
- DOI
- ISBN
- EISBN
- ISSN
- EISSN
- Issue
- Volume
- References
Filter
- Title
- Author
- Author Affiliations
- Full Text
- Abstract
- Keyword
- DOI
- ISBN
- EISBN
- ISSN
- EISSN
- Issue
- Volume
- References
NARROW
Format
Journal
Article Type
Date
1-2 of 2
M Ohtsubo
Close
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
Sort by
Journal Articles
Journal:
Journal of Cell Biology
Journal of Cell Biology (1996) 133 (2): 391–403.
Published: 15 April 1996
Abstract
Growth factors and cell anchorage jointly regulate transit through G1 in almost all cell types, but the cell cycle basis for this combined requirement remains largely uncharacterized. We show here that cell adhesion and growth factors jointly regulate the cyclin D1- and E-dependent kinases. Adhesion to substratum regulates both the induction and translation of cyclin D1 mRNA. Nonadherent cells fail to phosphorylate the retinoblastoma protein (Rb), and enforced expression of cyclin D1 rescues Rb phosphorylation and entry into S phase when G1 cells are cultured in the absence of substratum. Nonadherent cells also fail to activate the cyclin E-associated kinase, and this effect can be linked to an increased association of the cdk inhibitors, p21 and p27. These data describe a striking convergence in the cell cycle controls used by the two major signal transduction systems responsible for normal and abnormal cell growth. Taken together with our previous studies showing adhesion-dependent expression of cyclin A, they also establish the cell cycle basis for explaining the combined requirement for growth factors and the extracellular matrix in transit through the Rb checkpoint, entry into S phase, and anchorage-dependent growth.
Journal Articles
Journal:
Journal of Cell Biology
Journal of Cell Biology (1989) 109 (4): 1389–1397.
Published: 01 October 1989
Abstract
The RCC1 gene, a regulator for the onset of chromosome condensation was found to encode a protein with a molecular mass of 45 kD, determined using the antibody against the synthetic peptides prepared according to the amino acid sequence of the putative RCC1 protein. The p45 located in the nuclei was released from the isolated nuclei, either by DNase I digestion or by treatment with 0.3 M NaCl. Consistently, p45 bound to the DNA-cellulose column was eluted with 0.3 M NaCl. After sequential treatment with DNase I and 2 M NaCl, almost all of the RCC1 protein were released from the nuclei. Thus, RCC1 protein locates on the chromatin and is not a component of the nuclear matrix. In mitotic cells, p45 is dispersed into the cytoplasm. Presumably, RCC1 protein plays a role in regulating the onset of chromosome condensation, at the level of transcription or of mRNA maturation.