Skip Nav Destination
Close Modal
Update search
Filter
- Title
- Author
- Author Affiliations
- Full Text
- Abstract
- Keyword
- DOI
- ISBN
- EISBN
- ISSN
- EISSN
- Issue
- Volume
- References
Filter
- Title
- Author
- Author Affiliations
- Full Text
- Abstract
- Keyword
- DOI
- ISBN
- EISBN
- ISSN
- EISSN
- Issue
- Volume
- References
Filter
- Title
- Author
- Author Affiliations
- Full Text
- Abstract
- Keyword
- DOI
- ISBN
- EISBN
- ISSN
- EISSN
- Issue
- Volume
- References
Filter
- Title
- Author
- Author Affiliations
- Full Text
- Abstract
- Keyword
- DOI
- ISBN
- EISBN
- ISSN
- EISSN
- Issue
- Volume
- References
Filter
- Title
- Author
- Author Affiliations
- Full Text
- Abstract
- Keyword
- DOI
- ISBN
- EISBN
- ISSN
- EISSN
- Issue
- Volume
- References
Filter
- Title
- Author
- Author Affiliations
- Full Text
- Abstract
- Keyword
- DOI
- ISBN
- EISBN
- ISSN
- EISSN
- Issue
- Volume
- References
NARROW
Format
Journal
Article Type
Date
1-8 of 8
M Klagsbrun
Close
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
Sort by
Journal Articles
Journal:
Journal of Cell Biology
Journal of Cell Biology (1995) 128 (5): 929–938.
Published: 01 March 1995
Abstract
The membrane-anchored heparin-binding EGF-like growth factor precursor (proHB-EGF)/diphtheria toxin receptor (DTR) belongs to a class of transmembrane growth factors and physically associates with CD9/DRAP27 which is also a transmembrane protein. To evaluate the biological activities of proHB-EGF/DTR as a juxtacrine growth factor and the biological significance of its association with CD9/DRAP27, the mitogenic activity of proHB-EGF/DTR was analyzed using stable transfectants of mouse L cells expressing both human proHB-EGF/DTR and monkey CD9/DRAP27, or either one alone. Juxtacrine activity was assayed by measuring the ability of cells in co-culture to stimulate DNA synthesis in an EGF receptor ligand dependent cell line, EP170.7. LH-2 cells expressing human proHB-EGF/DTR stimulated EP170.7 cell growth moderately. However, LCH-1 cells, a stable co-transfectant expressing both human proHB-EGF/DTR and monkey CD9/DRAP27 cDNAs, dramatically unregulated the juxtacrine growth factor activity of proHB-EGF/DTR approximately 25 times over that of LH-2 cells even though both cell types expressed similar levels of proHB-EGF/DTR on the cell surface. Anti-CD9/DRAP27 antibodies which were not able to neutralize the mitogenic activity of soluble HB-EGF suppressed LCH-1 cell juxtacrine growth activity to the same extent as did anti-HB-EGF neutralizing antibodies and CRM 197, specific inhibitors of human HG-EGF. These findings suggest that optimal expression of the juxtacrine growth activity of proHB-EGF/DTR requires co-expression of CD9/DRAP27. These studies also indicate that growth factor potentiation effects which have been observed previously for soluble growth factors also occurs at the level of cell surface associated growth factors.
Journal Articles
Journal:
Journal of Cell Biology
Journal of Cell Biology (1993) 122 (4): 933–940.
Published: 15 August 1993
Abstract
Heparin-binding EGF-like growth factor (HB-EGF), but not EGF, binds to cell surface heparan sulfate proteoglycan (HSPG). This was demonstrated in (a) the binding of 125I-HB-EGF to mutant CHO cells deficient in HS production was diminished by 70% compared to wild-type CHO cells, (b) the binding of 125I-HB-EGF to CHO cells and bovine aortic smooth muscle cells (BASMC) was diminished 80% by heparitinase or chlorate treatment, and (c) 125I-EGF did not bind to CHO cells and its binding to BASMC was not diminished at all by heparitinase and only slightly by chlorate treatment. Accordingly, the role of HB-EGF interactions with HSPG in modulating bioactivity was examined. Heparitinase or chlorate treatment of BASMC diminished the ability of HB-EGF to stimulate BASMC migration by 60-80%. A similar inhibition of migration occurred when BASMC were treated with a synthetic peptide (P21) corresponding to the sequence of the putative heparin-binding domain of HB-EGF. As a control for BASMC viability, and for specificity, it was found that heparitinase and P21 did not inhibit at all and chlorate inhibited only slightly the stimulation of BASMC migration by PDGF AB. Since heparitinase, chlorate, and P21 treatment also diminished by 70-80% the cross-linking of 125I-HB-EGF to the EGF receptor, it was concluded that the interaction of HB-EGF, via its heparin-binding domain, with cell surface HSPG was essential for its optimal binding to the EGF receptor on BASMC and hence for its optimal ability to stimulate migration.
Journal Articles
Journal:
Journal of Cell Biology
Journal of Cell Biology (1989) 109 (2): 823–831.
Published: 01 August 1989
Abstract
Vascular endothelial cells (ECs) seeded sparsely on extracellular matrix (ECM) will proliferate in the absence of exogenous basic fibroblast growth factor (bFGF). This ECM will also stimulate neurite outgrowth in PC12 cells in the absence of exogenous growth factors. We have previously shown that bFGF is found in subendothelial ECM (Vlodavsky, I., J. Folkman, R. Sullivan, R. Fridman, R. Ishai-Michaeli, J. Sasse, and M. Klagsburn. 1987. Proc. Natl. Acad. Sci. USA. 84:2292-2296) and in basement membranes (Folkman, J., M. Klagsburn, J. Sasse, M. Wadzinski, D. Ingber, and I. Vlodavsky. 1988. Am. J. Pathol. 130:393-400). The actual requirement of ECM-associated bFGF for the growth of ECs and differentiation of PC12 cells was shown in two ways. First, polyclonal anti-bFGF antibodies added to subendothelial ECM inhibited both EC proliferation and PC12 neurite outgrowth. Secondly, PF-HR-9 cells, which do not synthesize bFGF and which produce an ECM not permissive for EC proliferation and PC12 neurite outgrowth, were transfected with bFGF cDNA. PF-HR-9 cells transfected with bFGF, but not with the dominant selectable marker SV2-neomycin, were found to express bFGF and to produce an ECM which did support both EC proliferation and PC12 differentiation. The ECM-mediated stimulatory effects were inhibited by anti-bFGF antibodies but not by anti-nerve growth factor antibodies or nonimmune rabbit IgG. These results indicate that bFGF associated with ECM is a required ECM component for ECM-mediated cell proliferation and differentiation.
Journal Articles
Journal:
Journal of Cell Biology
Journal of Cell Biology (1985) 100 (4): 1219–1227.
Published: 01 April 1985
Abstract
Cartilage-derived growth factor (CDGF), a cationic polypeptide of approximately 18,000 mol wt, was prepared from bovine articular cartilage; other sources were bovine and human scapular and costal cartilage. Previous studies have shown that CDGF stimulates the proliferation of cultured mouse fibroblasts as well as chondrocytes and endothelial cells from various sources. In this study, CDGF was shown to stimulate dose-dependently the accumulation of DNA and collagen by rat embryo fibroblasts and a population of fibroblasts derived from granulation tissue. CDGF also stimulated the proliferation of cultured bovine capillary endothelial cells dose-dependently. To evaluate the effects of CDGF in vivo, we implanted polyvinyl alcohol sponges subcutaneously in rats. 6 d postimplantation, sponges were injected with 300 micrograms of partially purified CDGF, a dose which takes into account the cell numbers in the sponges as compared with cell cultures. CDGF rapidly disappeared from the sponges and only approximately 10% of the initial dose was present at 4 h. Despite its transient presence, CDGF caused a relative increase in sponge DNA content of 2.6-fold at 48 h and 2.4-fold at 72 h. We repeated the sponge experiment by using 500-ng injections of CDGF purified to near homogeneity by heparin-Sepharose chromatography. Purified CDGF caused significant increases in sponge collagen, protein, and DNA content at 48 and 72 h after a single injection. The effects of CDGF were abolished by heat and unaffected by reduction of disulfide linkages. Morphologically, CDGF did not evoke an inflammatory response, and its effect on proliferating endothelial cells and fibroblasts was, therefore, probably direct. However, increases in DNA content of sponges could not be fully accounted for by increased DNA synthesis, which suggests that recruitment may be an important component of the in vivo response. Taken together, the effects of CDGF on cultured cells and granulation tissue suggest that the sustained presence of CDGF in vivo may greatly enhance its effects upon wound repair.
Journal Articles
Journal:
Journal of Cell Biology
Journal of Cell Biology (1984) 99 (4): 1545–1549.
Published: 01 October 1984
Abstract
Bovine retina and hypothalamus contain anionic endothelial cell mitogens that display unusual affinities for the negatively charged glycosaminoglycan heparin. Both growth factor activities are acidic polypeptides (pl's of 5.0) as determined by isoelectric focusing and DEAE-affinity chromatography. In spite of their anionic nature, the factors bound to heparin-Sepharose columns with high affinity and could be eluted only at high salt concentrations (0.9-1.1 M NaCl). The affinity of the retina-derived growth factor (RDGF) for heparin permitted a 15,000-fold purification of the mitogen in two steps: heparin-affinity chromatography and size exclusion high-performance liquid chromatography. RDGF and the anionic hypothalamus-derived factor (aHDGF) exhibit three major biochemical similarities including isoelectric point, (pl's of 5.0), heparin affinity (elution at 0.9-1.1 M NaCl) and molecular weight (18,000). Additionally, the two factors display similar biological activities, stimulating the proliferation of capillary and human umbilical vein endothelial and 3T3 cells but not vascular smooth muscle cells. We suggest that RDGF and aHDGF are related if not identical growth factor molecules.
Journal Articles
Journal:
Journal of Cell Biology
Journal of Cell Biology (1983) 97 (5): 1435–1443.
Published: 01 November 1983
Abstract
A mitogenic polypeptide, previously identified in Sertoli cells of the prepuberal mouse (Feig, L. A., A. R. Bellvé, N. Horbach-Erickson, and M. Klagsbrun, 1980, Proc. Natl. Acad. Sci. USA., 77:4774-4778), now has been shown to exist in Sertoli cells of the adult mouse and in the seminiferous epithelium of several other mammalian species, including the rat, guinea pig, and calf. The levels of this seminiferous growth factor (SGF) are not appreciably reduced in adult mouse testes following hypophysectomy. SGF purified from either the adult mouse or newborn calf seminiferous epithelium has a molecular weight (Mr) of 15,700 and a pl between 4.8 and 5.8, when exposed to denaturing conditions. Furthermore, SGF from these two mammalian species probably has few exposed hydrophobic domains and has a strong propensity to aggregate into multiple, high Mr species. A purification sequence based on these biochemical properties has enabled a greater than 350-fold enrichment of SGF activity from the calf seminiferous epithelium. The protocol involves a sequence of: (a) ammonium sulfate precipitation, (b) DEAE-cellulose ion exchange chromatography, (c) gel filtration chromatography on Bio-Gel P150 in 1.0 M ammonium acetate, (d) hydrophobic chromatography on dodecyl agarose, and (e) gel filtration chromatography in 6.0 M guanidine hydrochloride. Subsequent analysis of this purified preparation by SDS PAGE, followed by silver staining, reveals approximately 7 polypeptides with Mr between 14,000 and 20,000.
Journal Articles
Journal:
Journal of Cell Biology
Journal of Cell Biology (1981) 88 (2): 294–300.
Published: 01 February 1981
Abstract
Bovine milk may be used as a supplement for the serum-free growth of certain fibroblastic cells in culture. The growth properties of three representative cell types in milk-supplemented medium were examined; fibroblastic cell strains, fibroblastic cell lines, and transformed fibroblasts. Transformed fibroblasts, which included RNA and DNA tumor virus-transformed cells and carcinogen-transformed cells, grew in milk. Instead of growing attached to the culture dishes, as they normally do in serum, transformed fibroblasts grew in milk as large clusters in suspension. In contrast, nontransformed fibroblastic cell strains and cell lines did not grow in milk-supplemented medium. Fibroblasts transformed by a temperature-sensitive transformation mutant of Rous sarcoma virus were temperature-sensitive for growth in milk. The failure of cells to adhere to the substratum in milk-supplemented medium suggested that milk might be deficient in attachment factors for fibroblasts. When the attachment of fibroblastic cells in milk-supplemented medium was facilitated by pretreating culture dishes with fibronectin, (a) transformed cells grew attached rather than in suspension, (b) normal cell lines attached and grew to confluence, and (c) normal cell strains adhered and survived but did not exhibit appreciable cell proliferation.
Journal Articles
Journal:
Journal of Cell Biology
Journal of Cell Biology (1980) 84 (3): 808–814.
Published: 01 March 1980
Abstract
Medium lacking serum but supplemented with milk will support the growth of sparse cells in culture. Milk obtained within 8 h after the birth of a calf (day 1 colostrum) is the most effective in supporting proliferation. In mixed cultures of early-passage bovine embryonic kidney (BEK) or early-passage calf kidney (CK) cells, both epithelial cells and fibroblasts grow in Dulbecco's modified eagle's medium (DMEM) supplemented with serum. However, only cells that appear to be epithelial-like grow in DMEM supplemented with colostrum. Sparse cultures of early-passage human and rat fibroblasts that grow readily in DMEM supplemented with serum do not grow in DMEM supplemented with colostrum. Canine kidney epithelial cells (MDCK), when plated sparsely, grow exponentially in DMEM supplemented with day 1 bovine colostrum. The generation time is 26 h, the same growth rate as in DMEM supplemented with calf serum. The MDCK cells can be subcultured and regrown to confluence repeatedly in colostrum-supplemented DMEM. Growth in DMEM supplemented with colostrum does not alter the morphological characteristics of the MDCK cells, which are polygonal, contain microvilli at the apical surface, and are connected by tight junctions and desmosomes. MDCK cells do not proliferate in DMEM supplemented with milk obtained 1 wk after the birth of a calf.