Skip Nav Destination
Close Modal
Update search
Filter
- Title
- Author
- Author Affiliations
- Full Text
- Abstract
- Keyword
- DOI
- ISBN
- EISBN
- ISSN
- EISSN
- Issue
- Volume
- References
Filter
- Title
- Author
- Author Affiliations
- Full Text
- Abstract
- Keyword
- DOI
- ISBN
- EISBN
- ISSN
- EISSN
- Issue
- Volume
- References
Filter
- Title
- Author
- Author Affiliations
- Full Text
- Abstract
- Keyword
- DOI
- ISBN
- EISBN
- ISSN
- EISSN
- Issue
- Volume
- References
Filter
- Title
- Author
- Author Affiliations
- Full Text
- Abstract
- Keyword
- DOI
- ISBN
- EISBN
- ISSN
- EISSN
- Issue
- Volume
- References
Filter
- Title
- Author
- Author Affiliations
- Full Text
- Abstract
- Keyword
- DOI
- ISBN
- EISBN
- ISSN
- EISSN
- Issue
- Volume
- References
Filter
- Title
- Author
- Author Affiliations
- Full Text
- Abstract
- Keyword
- DOI
- ISBN
- EISBN
- ISSN
- EISSN
- Issue
- Volume
- References
NARROW
Format
Journal
Article Type
Date
1-2 of 2
M Culty
Close
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
Sort by
Journal Articles
Journal:
Journal of Cell Biology
Journal of Cell Biology (1992) 116 (4): 1055–1062.
Published: 15 February 1992
Abstract
The hyaluronan receptor belongs to the polymorphic family of CD44 glycoproteins, which have been implicated in a variety of cellular functions including adhesion to hyaluronan and collagen, the binding of lymphocytes to high endothelial cells during extravasation, and conferring metastatic potential to carcinoma cells. Here, we demonstrate that the receptor also participates in the uptake and degradation of hyaluronan by both transformed fibroblasts (SV-3T3 cells) and alveolar macrophages. These cells were incubated with isotopically labeled hyaluronan for various periods of time, and the extent of degradation was determined by either molecular-sieve chromatography or centrifugation through Centricon 30 microconcentrators. The macrophages degraded the hyaluronan at a faster rate than the SV-3T3 cells, which may reflect the fact that they contained a greater number of receptors. More importantly, in both cell types, the degradation of hyaluronan was specifically blocked by antibodies directed against the receptor. However, the receptor by itself did not have the ability to degrade hyaluronan, since preparations of SV-3T3 membranes containing the receptor did not break down hyaluronan. Subsequent experiments revealed that macrophages can internalize fluorescein-tagged hyaluronan, and this process was blocked by antibodies against the receptor. Furthermore, the subsequent degradation of hyaluronan was inhibited by agents that block the acidification of lysosomes (chloroquine and NH4Cl). Thus, the most likely explanation for these results is that the receptor mediates the uptake of hyaluronan into the cell where it can be degraded by acid hydrolases in lysosomes. The ability of cells expressing the receptor to degrade hyaluronan may be important during tissue morphogenesis and cell migration.
Journal Articles
Journal:
Journal of Cell Biology
Journal of Cell Biology (1990) 111 (6): 2765–2774.
Published: 01 December 1990
Abstract
The present study was undertaken to determine the relationship between the hyaluronate receptor and CD44 (H-CAM), cell-surface glycoproteins of similar molecular weights that have been implicated in cell adhesion. In initial experiments, a panel of monoclonal antibodies directed against CD44 were tested for their ability to cross react with the hyaluronate receptor. These antibodies immunoprecipitated [3H]hyaluronate binding activity from detergent extracts of both mouse and human cells, indicating that the hyaluronate receptor is identical to CD44. In addition, one of these antibodies (KM-201 to mouse CD44) directly blocked the binding of labeled hyaluronate to the receptor and inhibited hyaluronate dependent aggregation of SV-3T3 cells. CD44 has also been implicated in lymphocyte binding to high endothelial venules during lymphocyte homing. Interestingly, the monoclonal antibody Hermes-3, which blocks lymphocyte binding to the high endothelial venules of mucosal lymphoid tissue, had no effect on the binding of labeled hyaluronate. Furthermore, the binding of lymphocytes to high endothelial cells of lymph nodes and mucosal lymphoid tissue was not significantly affected by treatment with agents that block the binding of hyaluronate (hyaluronidase, excess hyaluronate and specific antibodies). Thus, CD44 appears to have at least two distinct functional domains, one for binding hyaluronate and another involved in interactions with mucosal high endothelial venules.