Skip Nav Destination
Close Modal
Update search
Filter
- Title
- Author
- Author Affiliations
- Full Text
- Abstract
- Keyword
- DOI
- ISBN
- EISBN
- ISSN
- EISSN
- Issue
- Volume
- References
Filter
- Title
- Author
- Author Affiliations
- Full Text
- Abstract
- Keyword
- DOI
- ISBN
- EISBN
- ISSN
- EISSN
- Issue
- Volume
- References
Filter
- Title
- Author
- Author Affiliations
- Full Text
- Abstract
- Keyword
- DOI
- ISBN
- EISBN
- ISSN
- EISSN
- Issue
- Volume
- References
Filter
- Title
- Author
- Author Affiliations
- Full Text
- Abstract
- Keyword
- DOI
- ISBN
- EISBN
- ISSN
- EISSN
- Issue
- Volume
- References
Filter
- Title
- Author
- Author Affiliations
- Full Text
- Abstract
- Keyword
- DOI
- ISBN
- EISBN
- ISSN
- EISSN
- Issue
- Volume
- References
Filter
- Title
- Author
- Author Affiliations
- Full Text
- Abstract
- Keyword
- DOI
- ISBN
- EISBN
- ISSN
- EISSN
- Issue
- Volume
- References
NARROW
Format
Journal
Article Type
Date
1-3 of 3
L Bell
Close
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
Sort by
Journal Articles
Eric L. Bell, Tatyana A. Klimova, James Eisenbart, Carlos T. Moraes, Michael P. Murphy, G.R. Scott Budinger, Navdeep S. Chandel
Journal:
Journal of Cell Biology
Journal of Cell Biology (2007) 177 (6): 1029–1036.
Published: 11 June 2007
Abstract
Mammalian cells increase transcription of genes for adaptation to hypoxia through the stabilization of hypoxia-inducible factor 1α (HIF-1α) protein. How cells transduce hypoxic signals to stabilize the HIF-1α protein remains unresolved. We demonstrate that cells deficient in the complex III subunit cytochrome b , which are respiratory incompetent, increase ROS levels and stabilize the HIF-1α protein during hypoxia. RNA interference of the complex III subunit Rieske iron sulfur protein in the cytochrome b –null cells and treatment of wild-type cells with stigmatellin abolished reactive oxygen species (ROS) generation at the Q o site of complex III. These interventions maintained hydroxylation of HIF-1α protein and prevented stabilization of HIF-1α protein during hypoxia. Antioxidants maintained hydroxylation of HIF-1α protein and prevented stabilization of HIF-1α protein during hypoxia. Exogenous hydrogen peroxide under normoxia prevented hydroxylation of HIF-1α protein and stabilized HIF-1α protein. These results provide genetic and pharmacologic evidence that the Q o site of complex III is required for the transduction of hypoxic signal by releasing ROS to stabilize the HIF-1α protein.
Includes: Supplementary data
Journal Articles
Journal:
Journal of Cell Biology
Journal of Cell Biology (1990) 110 (3): 789–801.
Published: 01 March 1990
Abstract
Bovine aortic endothelial cell (BAEC) attachments to laminin, fibronectin, and fibrinogen are inhibited by soluble arginine-glycine-aspartate (RGD)-containing peptides, and YGRGDSP activity is responsive to titration of either soluble peptide or matrix protein. To assess the presence of RGD-dependent receptors, immunoprecipitation and immunoblotting studies were conducted and demonstrated integrin beta 1, beta 3, and associated alpha subunits as well as a beta 1 precursor. Immunofluorescence of BAECs plated on laminin, fibronectin, and fibrinogen reveals different matrix-binding specificities of each of these integrin subclasses. By 1 h after plating, organization of beta 1 integrin into fibrillar streaks is influenced by laminin and fibronectin, whereas beta 3 integrin punctate organization is influenced by fibrinogen and the integrin spatial distribution changes with time in culture. In contrast, the nonintegrin laminin-binding protein LB69 only organizes after cell-substrate contact is well established several hours after plating. Migration of BAECs is also mediated by both integrin and nonintegrin matrix-binding proteins. Specifically, BAEC migration on laminin is remarkably sensitive to RGD peptide inhibition, and, in its presence, beta 1 integrin organization dissipates and reorganizes into perinuclear vesicles. However, RGD peptides do not alter LB69 linear organization during migration. Similarly, agents that block LB69--e.g., antibodies to LB69 as well as YIGSR-NH2 peptide--do not inhibit attachment of nonmotile BAECs to laminin. However, both anti-LB69 and YIGSR-NH2 inhibit late adhesive events such as spreading. Accordingly, we propose that integrin and nonintegrin extracellular matrix-binding protein organizations in BAECs are both temporally and spatially segregated during attachment processes. High affinity nonintegrin interaction with matrix may create necessary stable contacts for longterm attachment, while lower affinity integrins may be important for initial cell adhesion as well as for transient contacts of motile BAECs.
Journal Articles
Journal:
Journal of Cell Biology
Journal of Cell Biology (1969) 42 (1): 284–295.
Published: 01 July 1969
Abstract
The ampullate silk gland of the spider, Araneus sericatus , produces the silk fiber for the scaffolding of the web. The fine structure of the various parts of the gland is described. The distal portion of the duct consist of a tube of epithelial cells which appear to secrete a substance which forms the tunica intima of the duct wall. At the proximal end of the duct there is a region of secretory cells. The epithelium of the sac portion contains five morphologically distinct types of granules. The bulk of the synthesis of silk occurs in the tail of the gland, and in this region only a single type of secretory droplet is seen in the epithelium. Protein synthesis can be stimulated by the injection of 1 mg/kg acetylcholine into the body fluids. 10 min after injection, much of the protein stored in the cytoplasm of the epithelial cells has been secreted into the lumen. 20 min after stimulation, the ergastoplasmic sacs form large whorls in the cytoplasm. Protein, similar in electron-opacity to protein found in the lumen, begins to form in that portion of the cytoplasm which is enclosed by the whorls. The limiting membrane of these droplets is formed by ergastoplasmic membranes which lose their ribosomes. No Golgi material has been found in these cells. Protein appears to be manufactured in the cytoplasm of the tail cells in a form which is ready for secretion.