Skip Nav Destination
Close Modal
Update search
Filter
- Title
- Author
- Author Affiliations
- Full Text
- Abstract
- Keyword
- DOI
- ISBN
- EISBN
- ISSN
- EISSN
- Issue
- Volume
- References
Filter
- Title
- Author
- Author Affiliations
- Full Text
- Abstract
- Keyword
- DOI
- ISBN
- EISBN
- ISSN
- EISSN
- Issue
- Volume
- References
Filter
- Title
- Author
- Author Affiliations
- Full Text
- Abstract
- Keyword
- DOI
- ISBN
- EISBN
- ISSN
- EISSN
- Issue
- Volume
- References
Filter
- Title
- Author
- Author Affiliations
- Full Text
- Abstract
- Keyword
- DOI
- ISBN
- EISBN
- ISSN
- EISSN
- Issue
- Volume
- References
Filter
- Title
- Author
- Author Affiliations
- Full Text
- Abstract
- Keyword
- DOI
- ISBN
- EISBN
- ISSN
- EISSN
- Issue
- Volume
- References
Filter
- Title
- Author
- Author Affiliations
- Full Text
- Abstract
- Keyword
- DOI
- ISBN
- EISBN
- ISSN
- EISSN
- Issue
- Volume
- References
NARROW
Format
Journal
Article Type
Date
1-4 of 4
J Thorner
Close
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
Sort by
Journal Articles
Journal:
Journal of Cell Biology
Journal of Cell Biology (1996) 132 (4): 549–563.
Published: 15 February 1996
Abstract
The PAL1 gene was isolated using PCR and degenerate oligonucleotide primers corresponding to highly conserved amino acid sequence motifs diagnostic of the ATP-binding cassette domain of the superfamily of membrane-bound transport proteins typified by mammalian multidrug resistance transporter 1 and Saccharomyces cerevisiae Ste6. The deduced PAL1 gene product is similar in length to, has the same predicted topology as, and shares the highest degree of amino acid sequence identity with two human proteins, adrenoleukodystrophy protein and peroxisomal membrane protein (70 kD), which are both presumptive ATP-binding cassette transporters thought to be constituents of the peroxisomal membrane. As judged by hybridization of a PAL1 probe to isolated RNA and by expression of a PAL1-lacZ fusion, a PAL1 transcript was only detectable when cells were grown on oleic acid, a carbon source which requires the biogenesis of functional peroxisomes for its metabolism. A pal1delta mutant grew normally on either glucose- or glycerol-containing media; however, unlike PAL1+ cells (or the pal1delta mutant carrying the PAL1 gene on a plasmid), pal1delta cells were unable to grow on either a solid medium or a liquid medium containing oleic acid as the sole carbon source. Antibodies raised against a chimeric protein in which the COOH-terminal domain of Pal1 was fused to glutathione S-transferase specifically recognized a protein in extracts from wild-type cells only when grown on oleic acid; this species represents the PAL1 gene product because it was missing in pal1delta cells and more abundant in pal1delta cells expressing PAL1 from a multicopy plasmid. The Pal1 polypeptide was highly enriched in the organellar pellet fraction prepared from wild-type cells by differential centrifugation and comigrated upon velocity sedimentation in a Nycodenz gradient with a known component of the peroxisomal matrix, e-oxoacyl-CoA thiolase. As judged by both subcellular fractionation and indirect immunofluorescence, localization of 3-oxoacyl-CoA thiolase to peroxisomes was unchanged whether Pal1 was present, absent, or overexpressed. These findings demonstrate that Pal1 is a peroxisome-specific protein, that it is required for peroxisome function, but that it is not necessary for the biogenesis of peroxisomes or for the import of 3-oxoacyl-CoA thiolase (and at least two other peroxisomal matrix proteins).
Journal Articles
Journal:
Journal of Cell Biology
Journal of Cell Biology (1994) 127 (3): 623–639.
Published: 01 November 1994
Abstract
The gene (FPR3) encoding a novel type of peptidylpropyl-cis-trans-isomerase (PPIase) was isolated during a search for previously unidentified nuclear proteins in Saccharomyces cerevisiae. PPIases are thought to act in conjunction with protein chaperones because they accelerate the rate of conformational interconversions around proline residues in polypeptides. The FPR3 gene product (Fpr3) is 413 amino acids long. The 111 COOH-terminal residues of Fpr3 share greater than 40% amino acid identity with a particular class of PPIases, termed FK506-binding proteins (FKBPs) because they are the intracellular receptors for two immunosuppressive compounds, rapamycin and FK506. When expressed in and purified from Escherichia coli, both full-length Fpr3 and its isolated COOH-terminal domain exhibit readily detectable PPIase activity. Both fpr3 delta null mutants and cells expressing FPR3 from its own promoter on a multicopy plasmid have no discernible growth phenotype and do not display any alteration in sensitivity to the growth-inhibitory effects of either FK506 or rapamycin. In S. cerevisiae, the gene for a 112-residue cytosolic FKBP (FPR1) and the gene for a 135-residue ER-associated FKBP (FPR2) have been described before. Even fpr1 fpr2 fpr3 triple mutants are viable. However, in cells carrying an fpr1 delta mutation (which confers resistance to rapamycin), overexpression from the GAL1 promoter of the C-terminal domain of Fpr3, but not full-length Fpr3, restored sensitivity to rapamycin. Conversely, overproduction from the GAL1 promoter of full-length Fpr3, but not its COOH-terminal domain, is growth inhibitory in both normal cells and fpr1 delta mutants. In fpr1 delta cells, the toxic effect of Fpr3 overproduction can be reversed by rapamycin. Overproduction of the NH2-terminal domain of Fpr3 is also growth inhibitory in normal cells and fpr1 delta mutants, but this toxicity is not ameliorated in fpr1 delta cells by rapamycin. The NH2-terminal domain of Fpr3 contains long stretches of acidic residues alternating with blocks of basic residues, a structure that resembles sequences found in nucleolar proteins, including S. cerevisiae NSR1 and mammalian nucleolin. Indirect immunofluorescence with polyclonal antibodies raised against either the NH2- or the COOH-terminal segments of Fpr3 expressed in E. coli demonstrated that Fpr3 is located exclusively in the nucleolus.
Journal Articles
Journal:
Journal of Cell Biology
Journal of Cell Biology (1993) 120 (5): 1203–1215.
Published: 01 March 1993
Abstract
STE6 gene product is required for secretion of the lipopeptide mating pheromone a-factor by Saccharomyces cerevisiae MATa cells. Radiolabeling and immunoprecipitation, either with specific polyclonal antibodies raised against a TrpE-Ste6 fusion protein or with mAbs that recognize c-myc epitopes in fully functional epitope-tagged Ste6 derivatives, demonstrated that Ste6 is a 145-kD phosphoprotein. Subcellular fractionation, various extraction procedures, and immunoblotting showed that Ste6 is an intrinsic plasma membrane-associated protein. The apparent molecular weight of Ste6 was unaffected by tunicamycin treatment, and the radiolabeled protein did not bind to concanavalin A, indicating that Ste6 is not glycosylated and that glycosylation is not required either for its membrane delivery or its function. The amino acid sequence of Ste6 predicts two ATP-binding folds; correspondingly, Ste6 was photoaffinity-labeled specifically with 8-azido-[alpha-32P]ATP. Indirect immunofluorescence revealed that in exponentially growing MATa cells, the majority of Ste6 showed a patchy distribution within the plasma membrane, but a significant fraction was found concentrated in a number of vesicle-like bodies subtending the plasma membrane. In contrast, in MATa cells exposed to the mating pheromone alpha-factor, which markedly induced Ste6 production, the majority of Ste6 was incorporated into the plasma membrane within the growing tip of the elongating cells. The highly localized insertion of this transporter may establish pronounced anisotropy in a-factor secretion from the MATa cell, and thereby may contribute to the establishment of the cell polarity which restricts partner selection and cell fusion during mating to one MAT alpha cell.
Journal Articles
Journal:
Journal of Cell Biology
Journal of Cell Biology (1990) 111 (6): 2851–2859.
Published: 01 December 1990
Abstract
Extracts from BSC-40 cells infected with vaccinia recombinants expressing either the yeast KEX2 prohormone endoprotease or a human structural homologue (fur gene product) contained an elevated level of a membrane-associated endoproteolytic activity that could cleave at pairs of basic amino acids (-LysArg- and -ArgArg-). The fur-directed activity (furin) shared many properties with Kex2p including activity at pH 7.3 and a requirement for calcium. By using antifurin antibodies, immunoblot analysis detected two furin translation products (90 and 96 kD), while immunofluorescence indicated localization to the Golgi apparatus. Coexpression of either Kex2p or furin with the mouse beta-nerve growth factor precursor (pro-beta-NGF) resulted in greatly enhanced conversion of the precursor to mature nerve growth factor. Thus, the sequence homology shared by furin and the yeast KEX2 prohormone processing enzyme is reflected by significant functional homology both in vitro and in vivo.