Skip Nav Destination
Close Modal
Update search
Filter
- Title
- Author
- Author Affiliations
- Full Text
- Abstract
- Keyword
- DOI
- ISBN
- EISBN
- ISSN
- EISSN
- Issue
- Volume
- References
Filter
- Title
- Author
- Author Affiliations
- Full Text
- Abstract
- Keyword
- DOI
- ISBN
- EISBN
- ISSN
- EISSN
- Issue
- Volume
- References
Filter
- Title
- Author
- Author Affiliations
- Full Text
- Abstract
- Keyword
- DOI
- ISBN
- EISBN
- ISSN
- EISSN
- Issue
- Volume
- References
Filter
- Title
- Author
- Author Affiliations
- Full Text
- Abstract
- Keyword
- DOI
- ISBN
- EISBN
- ISSN
- EISSN
- Issue
- Volume
- References
Filter
- Title
- Author
- Author Affiliations
- Full Text
- Abstract
- Keyword
- DOI
- ISBN
- EISBN
- ISSN
- EISSN
- Issue
- Volume
- References
Filter
- Title
- Author
- Author Affiliations
- Full Text
- Abstract
- Keyword
- DOI
- ISBN
- EISBN
- ISSN
- EISSN
- Issue
- Volume
- References
NARROW
Format
Journal
Article Type
Date
1-4 of 4
J M Heiple
Close
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
Sort by
Journal Articles
Journal:
Journal of Cell Biology
Journal of Cell Biology (1983) 97 (1): 52–61.
Published: 01 July 1983
Abstract
We describe a new method for subcellular fractionation of human neutrophils. Neutrophils were disrupted by nitrogen cavitation and the nuclei removed by centrifugation. The postnuclear supernatant was applied on top of a discontinuous Percoll density gradient. Centrifugation for 15 min at 48,000 g resulted in complete separation of plasma membranes, azurophil granules, and specific granules. As determined by ultrastructure and the distribution of biochemical markers of these organelles, approximately 90% of the b-cytochrome in unstimulated cells was recovered from the band containing the specific granules and was shown to be in or tightly associated with the membrane. During stimulation of intact neutrophils with phorbol myristate acetate or the ionophore A23187, we observed translocation of 40-75% of the b-cytochrome to the plasma membrane. The extent of this translocation closely paralleled release of the specific granule marker, vitamin B12-binding protein. These data indicate that the b-cytochrome is in the membrane of the specific granules of unstimulated neutrophils and that stimulus-induced fusion of these granules with the plasma membrane results in a translocation of the cytochrome. Our observations provide a basis for the assembly of the microbicidal oxidase of the human neutrophil.
Journal Articles
Journal:
Journal of Cell Biology
Journal of Cell Biology (1982) 94 (1): 143–149.
Published: 01 July 1982
Abstract
Changes in pH are measured in pinosomes and phagosomes of single specimens of the giant, free-living ameba, Chaos carolinensis. Measurements of pH are made microfluorometrically, as previously described (Heiple and Taylor. 1980. J. Cell Biol. 86:885-890.) by quantitation of fluorescence intensity ratios (Ex489nm,/Ex452nm, Em520-560nm from ingested fluorescein thiocarbamyl (FTC)-ovalbumin. After 1 h of pinocytosis (induced in acid solution), FTC-ovalbumin is found in predominantly small ( less than or equal to 5 micrometers in diameter), acidic (pH less than or equal to 5.0-6.2) vesicles of various shape and density. As the length of ingestion time increases (up to 24 h), the probe is also found in vesicles of increasing size (up to 100 micrometers in diameter), increasing pH (up to pH approximately 8.0), and decreasing density. Co-localization of fluorescein and rhodamine fluorescence, after a pulse-chase with fluorescein- and rhodamine-labeled ovalbumin, suggests vesicle growth, in part, by fusion. The pH in a single phagosome is followed after ingestion of ciliates in neutral solutions of FTC-ovalbumin. A dramatic acidification (delta pH greater than or equal to - 2.0) begins within 5 min of phagosome formation and appears to be complete in approximately 20 min. Phagosomal pH then slowly recovers to more neutral values over the next 2 h. pH changes observed in more mature populations of pinosomes within a single cell may reflect those occurring within a single phagosome. Phagosomal and pinosomal pH changes may be required for lysosomal fusion and may be involved in regulation of lysosomal enzyme activity.
Journal Articles
Journal:
Journal of Cell Biology
Journal of Cell Biology (1980) 86 (3): 885–890.
Published: 01 September 1980
Abstract
Cytoplasmic pH in single living specimens of Chaos carolinensis is determined microfluorometrically by measuring the ratio of fluorescence intensity of microinjected fluorescein-thiocarbamyl (FTC)-ovalbumin at two different excitation wavelengths. The probe is evenly distributed throughout, and confined to, the cytoplasm, and the fluorescence intensity ratio depends only upon pH. It is independent of pathlength, concentration of probe, divalent cations, and ionic strength. Ratios are calibrated with a standard curve generated in situ by adjusting internal pH of FTC-ovalbumin-containing amebae with weak acid and weak base or by injection of strong buffers. With this technique, the average cytoplasmic pH of freely moving ameba is found to be 6.75 (SD +/- 0.3). The pH of a given spot relative to the morphology of a moving ameba remains fairly constant (+/- 0.05 U), whereas the pH of two different spots in the same cell may differ by as much as 0.4 U, and average pH in different amebae ranges from 6.3 to 7.4, with a suggestion of clustering about pH 6.5 and 6.8. During wound healing, there is a local, transient drop in pH (as great as 0.35 U) at the wound site upon puncture, proportional in extent to the degree of damage. Comparison of tails and advancing pseudopod tips reveals no significant difference in cytoplasmic pH at this level of spatial (50 microns diameter spot) and temporal (1.3 s) resolution. Fluctuations in intracellular pH and/or intracellular free Ca++ may be involved in regulation of cytoplasmic structure and contractility.
Journal Articles
Journal:
Journal of Cell Biology
Journal of Cell Biology (1980) 86 (2): 590–598.
Published: 01 August 1980
Abstract
The technique of molecular cytochemistry has been used to follow the distribution of fluorescently labeled actin in living Chaos carolinensis and Amoeba proteus during ameboid movement and various cellular processes. The distribution of 5-iodoacetamidofluorescein-labeled actin was compared with that of Lissamine rhodamine B sulfonyl chloride-labeled ovalbumin microinjected into the same cell and recorded with an image intensification microscope system. Actively motile cells demonstrated a rather uniform distribution of actin throughout most of the cytoplasm, except in the tail ectoplasm and in plasma gel sheets, where distinct actin structures were observed. In addition, actin-containing structures were induced in the cortex during wound healing, concanavalin A capping, pinocytosis, and contractions elicited by phalloidin injections. The formation of distinct fluorescent actin structures has been correlated with contractile activities.