Skip Nav Destination
Close Modal
Update search
Filter
- Title
- Author
- Author Affiliations
- Full Text
- Abstract
- Keyword
- DOI
- ISBN
- EISBN
- ISSN
- EISSN
- Issue
- Volume
- References
Filter
- Title
- Author
- Author Affiliations
- Full Text
- Abstract
- Keyword
- DOI
- ISBN
- EISBN
- ISSN
- EISSN
- Issue
- Volume
- References
Filter
- Title
- Author
- Author Affiliations
- Full Text
- Abstract
- Keyword
- DOI
- ISBN
- EISBN
- ISSN
- EISSN
- Issue
- Volume
- References
Filter
- Title
- Author
- Author Affiliations
- Full Text
- Abstract
- Keyword
- DOI
- ISBN
- EISBN
- ISSN
- EISSN
- Issue
- Volume
- References
Filter
- Title
- Author
- Author Affiliations
- Full Text
- Abstract
- Keyword
- DOI
- ISBN
- EISBN
- ISSN
- EISSN
- Issue
- Volume
- References
Filter
- Title
- Author
- Author Affiliations
- Full Text
- Abstract
- Keyword
- DOI
- ISBN
- EISBN
- ISSN
- EISSN
- Issue
- Volume
- References
NARROW
Format
Journal
Article Type
Date
1-3 of 3
J M Aletta
Close
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
Sort by
Journal Articles
Journal:
Journal of Cell Biology
Journal of Cell Biology (1988) 106 (5): 1573–1581.
Published: 01 May 1988
Abstract
This study characterizes effects of nerve growth factor (NGF) on the steady-state level and phosphorylation of a high molecular mass microtubule-associated protein in PC12 rat pheochromocytoma cells. Past work showed that NGF significantly raises the relative levels of this phosphoprotein, designated MAP1.2, with a time course similar to that of neurite outgrowth. To study this in greater detail, MAP1.2 in PC12 cell lysates was resolved by SDS-PAGE in gels containing 3.25% acrylamide/4 M urea and identified by comigration with material immunoprecipitated from the lysates by MAP1 antibodies. Quantification by metabolic radiolabeling with [35S]methionine or by silver staining revealed a 3.0-3.5-fold increase in MAP1.2 levels relative to total cell protein after NGF treatment for 2 wk or longer. A partial increase was detectable after 3 d, but not after 2 h of NGF exposure. As measured by incorporation of [32P]phosphate, NGF had a dual effect on MAP1.2. Within 15 min to 2 h, NGF enhanced the incorporation of phosphate into MAP1.2 by two- to threefold relative to total cell phosphoproteins. This value slowly increased thereafter so that by 2 wk or more of NGF exposure, the average enhancement of phosphate incorporation per MAP1.2 molecule was over fourfold. The rapid action of NGF on MAP1.2 could not be mimicked by either epidermal growth factor, a permeant cAMP derivative, phorbol ester, or elevated K+, each of which alters phosphorylation of other PC12 cell proteins. SDS-PAGE revealed multiple forms of MAP1.2 which, based on the effects of alkaline phosphatase on their electrophoretic mobilities, differ, at least in part, in extent of phosphorylation. Before NGF treatment, most PC12 cell MAP1.2 is in more rapidly migrating, relatively poorly phosphorylated forms. After long-term NGF exposure, most is in more slowly migrating, more highly phosphorylated forms. The effects of NGF on the rapid phosphorylation of MAP1.2 and on the long-term large increase in highly phosphorylated MAP1.2 forms could play major functional roles in NGF-mediated neuronal differentiation. Such roles may include effects on microtubule assembly, stability, and cross-linking and, possibly for the rapid effects, nuclear signaling.
Journal Articles
Journal:
Journal of Cell Biology
Journal of Cell Biology (1987) 105 (1): 277–290.
Published: 01 July 1987
Abstract
Chartins are a unique class of three families of microtubule-associated proteins, each consisting of several isoforms possessing varying degrees of phosphorylation. The most highly phosphorylated chartin isoforms are highly enriched in neuronal cell fractions containing microtubules and there is evidence that their phosphorylation may play a role in promoting neurite outgrowth. The present work describes the relationship between the phosphorylation state of chartins and the presence of intact microtubules in long-term cultures of NGF-treated, neurite-bearing PC12 cells. Cultures were depleted of microtubules by exposure to high concentrations of depolymerizing agents for 2-24 h. Radiolabeling of cellular proteins with [32P]orthophosphate or [35S]methionine revealed that both the ongoing and steady-state phosphorylation of chartins is markedly altered under these conditions. Two-dimensional isoelectric focusing by SDS-PAGE of whole cell extracts demonstrated that the more acidic, highly phosphorylated isoforms are diminished with a concomitant increase in the more basic, less phosphorylated isoforms. These phosphorylation changes were relatively specific for the chartins and were not observed for phosphorylated MAP 1.2, phospho-beta-tubulin, or most other phosphoproteins. Thus, the phosphorylation state of chartins, but not of other phosphoproteins, is regulated by the presence of native microtubules. Despite depolymerization of microtubules, neurites remained extended for at least 24 h. Neurite elongation, however, was arrested. Microtubules, therefore, may be required for extension, but not for short-term maintenance of well-established neurites. Taxol, which promotes tubule assembly and stability, does not, conversely, drive phosphorylation of the chartins. Instead, taxol appeared to decrease the turnover of phosphate in microtubule-associated, acidic chartin isoforms. These data suggest several models as to how chartin phosphorylation is regulated in neurite-bearing cells and indicate that phosphorylation of cytoplasmic and microtubule-associated chartins occurs via different mechanisms.
Journal Articles
Journal:
Journal of Cell Biology
Journal of Cell Biology (1986) 103 (2): 545–557.
Published: 01 August 1986
Abstract
We have used the nerve growth factor (NGF)-responsive line of PC12 pheochromocytoma cells as a model system to study microtubule specializations associated with neurite outgrowth. PC12 cells treated with NGF cease proliferating and extend neurites. Long-term NGF treatment results in a two- to threefold increase in the proportion of total cellular tubulin that is polymerized in PC12 cells. The increase in this parameter first becomes apparent at 2-4 d with NGF and increases steadily thereafter. Several changes in microtubule-associated proteins (MAPs) of PC12 cells also occur after exposure to NGF. In immunoprecipitation assays, we observed the levels of MAP-2 to increase by at least several-fold after treatment with NGF. We also found that the compositions of three MAP classes with apparent Mr of 64K, 67K, and 80K are altered by NGF treatment. These MAPs, recently designated "chartins," are biochemically and immunologically distinct from the similarly-sized tau MAPs (Peng et al., 1985 Brain Res. 361: 200; Magendantz and Solomon, 1985 Proc. Natl. Acad. Sci. 82: 6581). In two-dimensional isoelectric focusing x SDS polyacrylamide gels, each chartin MAP class resolves into a set of proteins of similar apparent Mr but distinct pI. Peptide mapping analyses confirm that the isoelectric variants comprising each chartin MAP class are closely related in primary structure. Several striking differences in the composition of the chartin MAPs of PC12 cells grown with or without NGF were consistently observed. In particular, following longterm NGF treatment, the abundances of the more acidic variants of each chartin MAP class were markedly enhanced relative to the more basic members. This occurs without substantial changes in the abundance of each MAP class as a whole relative to total cell protein. The combined results of in vivo phosphorylation and peptide mapping experiments indicate that the NGF-inducible chartin MAP species are not primary translation products, but are generated posttranslationally, apparently by differential phosphorylation of other chartin MAPs. These observations suggest that NGF treatment of PC12 cells leads to changes in the posttranslational processing of the chartin MAPs. The time course of these changes closely resembles that for the increase in the proportion of cellular tubulin that is polymerized and for neurite outgrowth. One of the important events in the growth and stabilization of neurites appears to be the formation of microtubule bundles that extend from the cell body to the tips of the neurites.(ABSTRACT TRUNCATED AT 400 WORDS)