Skip Nav Destination
Close Modal
Update search
Filter
- Title
- Author
- Author Affiliations
- Full Text
- Abstract
- Keyword
- DOI
- ISBN
- EISBN
- ISSN
- EISSN
- Issue
- Volume
- References
Filter
- Title
- Author
- Author Affiliations
- Full Text
- Abstract
- Keyword
- DOI
- ISBN
- EISBN
- ISSN
- EISSN
- Issue
- Volume
- References
Filter
- Title
- Author
- Author Affiliations
- Full Text
- Abstract
- Keyword
- DOI
- ISBN
- EISBN
- ISSN
- EISSN
- Issue
- Volume
- References
Filter
- Title
- Author
- Author Affiliations
- Full Text
- Abstract
- Keyword
- DOI
- ISBN
- EISBN
- ISSN
- EISSN
- Issue
- Volume
- References
Filter
- Title
- Author
- Author Affiliations
- Full Text
- Abstract
- Keyword
- DOI
- ISBN
- EISBN
- ISSN
- EISSN
- Issue
- Volume
- References
Filter
- Title
- Author
- Author Affiliations
- Full Text
- Abstract
- Keyword
- DOI
- ISBN
- EISBN
- ISSN
- EISSN
- Issue
- Volume
- References
NARROW
Format
Journal
Article Type
Date
1-1 of 1
J J Johnson
Close
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
Sort by
Journal Articles
Journal:
Journal of Cell Biology
Journal of Cell Biology (1993) 123 (1): 255–264.
Published: 01 October 1993
Abstract
The nematode Caenorhabditis elegans has two type IV collagen genes homologous to the mammalian alpha 1(IV) and alpha 2(IV) collagen genes. We demonstrate by transgenic rescue of mutant animals that the genetic locus encoding the C. elegans alpha 2(IV) collagen gene is let-2 on the X chromosome. The most severe effect of mutations in let-2 is temperature-sensitive embryonic lethality. The embryonic lethal phenotype is similar to that seen in animals with mutations in the alpha 1(IV) collagen gene, emb-9. The sequence of the entire C. elegans alpha 2(IV) collagen gene is presented. Comparisons with mammalian type IV collagen sequences show high amino acid sequence conservation in the C-terminal NCl domain and of crosslinking residues (Cys and Lys) in the N-terminal 7S domain. RT-PCR analysis shows that transcripts of the C. elegans alpha 2(IV) collagen gene are alternatively spliced. Transcripts contain one of two mutually exclusive exons, exon 9 or 10. These exons encode very similar products, differing primarily in the sequence of a 9-10 amino acid Gly-X-Y interruption. The expression of these alternatively spliced alpha 2(IV) collagen transcripts is developmentally regulated. In embryos over 90% of the alpha 2(IV) collagen mRNA contains exon 9, while larval and adult RNAs contain 80-90% exon 10. This shift in expression of alternative alpha 2(IV) collagen transcripts suggests that C. elegans embryos may require a different form of alpha 2(IV) collagen than do larvae and adults.