Skip Nav Destination
Close Modal
Update search
Filter
- Title
- Author
- Author Affiliations
- Full Text
- Abstract
- Keyword
- DOI
- ISBN
- EISBN
- ISSN
- EISSN
- Issue
- Volume
- References
Filter
- Title
- Author
- Author Affiliations
- Full Text
- Abstract
- Keyword
- DOI
- ISBN
- EISBN
- ISSN
- EISSN
- Issue
- Volume
- References
Filter
- Title
- Author
- Author Affiliations
- Full Text
- Abstract
- Keyword
- DOI
- ISBN
- EISBN
- ISSN
- EISSN
- Issue
- Volume
- References
Filter
- Title
- Author
- Author Affiliations
- Full Text
- Abstract
- Keyword
- DOI
- ISBN
- EISBN
- ISSN
- EISSN
- Issue
- Volume
- References
Filter
- Title
- Author
- Author Affiliations
- Full Text
- Abstract
- Keyword
- DOI
- ISBN
- EISBN
- ISSN
- EISSN
- Issue
- Volume
- References
Filter
- Title
- Author
- Author Affiliations
- Full Text
- Abstract
- Keyword
- DOI
- ISBN
- EISBN
- ISSN
- EISSN
- Issue
- Volume
- References
NARROW
Format
Journal
Article Type
Date
1-2 of 2
J Gailit
Close
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
Sort by
Journal Articles
Journal:
Journal of Cell Biology
Journal of Cell Biology (1989) 109 (3): 1341–1349.
Published: 01 September 1989
Abstract
Human polymorphonuclear leukocytes (PMN) released large quantities of hydrogen peroxide in response to tumor necrosis factor, but only when the cells were adherent to surfaces coated with extracellular matrix proteins. The PMN did not respond when exposed to cytokines and matrix proteins in suspension, or when exposed to cytokines while adherent to surfaces coated with stearic acid. PMN from children with genetic deficiency of the CD11/CD18 integrins underwent a normal respiratory burst upon adherence to uncoated polystyrene, but not in response to tumor necrosis factor when tested on polystyrene that was coated with serum, fibronectin, vitronectin, fibrinogen, thrombospondin, or laminin. Anti-CD18 antibodies, alone of sixteen antibodies tested, induced a similar defect in PMN from normal donors, when the PMN were tested on surfaces coated with serum, fibrinogen, thrombospondin, or laminin; no defect was induced by the anti-CD18 monoclonal antibody IB4 in normal PMN tested on surfaces coated with fibronectin or vitronectin. Thus, for cytokines to induce a respiratory burst in PMN, the cells must be able to use CD11/CD18 integrins and must interact with matrix proteins in the solid phase. CD11/CD18, which is already known to serve as a receptor for fibrinogen, may also be a receptor for thrombospondin and laminin. Finally, receptor(s) exist on PMN for fibronectin and vitronectin which are not blocked by the anti-CD18 antibody IB4 but which are nonetheless CD11/CD18 dependent.
Journal Articles
Journal:
Journal of Cell Biology
Journal of Cell Biology (1988) 106 (6): 2171–2182.
Published: 01 June 1988
Abstract
We used antibodies against the alpha subunits of the human fibronectin receptor (FNR) and vitronectin receptor (VNR) to localize simultaneously FNR and VNR at major substrate adhesion sites of fibroblasts and melanoma cells with double-label immunofluorescence microscopy. In early (2-6-h) serum-containing cultures, both FNR and VNR coaccumulated in focal contacts detected by interference reflection microscopy. Under higher resolution immunoscanning electron microscopy, FNR and VNR were also observed to be distributed randomly on the dorsal cell surface. As fibronectin-containing extracellular matrix fibers accumulated beneath the cells at 24 h, FNR became concentrated at contacts with these fibers and was no longer detected at focal contacts. VNR was not observed at matrix contacts but remained strikingly localized in focal contacts of the 24-h cells. Since focal contacts represent the sites of strongest cell-to-substrate adhesion, these results suggest that FNR and VNR together play critical roles in the maintenance of stable contacts between the cell and its substrate. In addition, the accumulation of FNR at extracellular matrix contacts implies that this receptor might also function in the process of cellular migration along fibronectin-containing matrix cables. To define the factors governing accumulation of FNR and VNR at focal contacts, fibroblasts in serum-free media were plated on substrates coated with purified ligands. Fibronectin-coated surfaces fostered accumulation of FNR but not VNR at focal contacts. On vitronectin-coated surfaces, or substrata derivatized with a tridecapeptide containing the cell attachment sequence Arg-Gly-Asp, both FNR and VNR became concentrated at focal contacts. These observations suggest that the availability of ligand is critical to the accumulation of FNR and VNR at focal contacts, and that FNR might also recognize substrate-bound vitronectin.