Skip Nav Destination
Close Modal
Update search
Filter
- Title
- Author
- Author Affiliations
- Full Text
- Abstract
- Keyword
- DOI
- ISBN
- EISBN
- ISSN
- EISSN
- Issue
- Volume
- References
Filter
- Title
- Author
- Author Affiliations
- Full Text
- Abstract
- Keyword
- DOI
- ISBN
- EISBN
- ISSN
- EISSN
- Issue
- Volume
- References
Filter
- Title
- Author
- Author Affiliations
- Full Text
- Abstract
- Keyword
- DOI
- ISBN
- EISBN
- ISSN
- EISSN
- Issue
- Volume
- References
Filter
- Title
- Author
- Author Affiliations
- Full Text
- Abstract
- Keyword
- DOI
- ISBN
- EISBN
- ISSN
- EISSN
- Issue
- Volume
- References
Filter
- Title
- Author
- Author Affiliations
- Full Text
- Abstract
- Keyword
- DOI
- ISBN
- EISBN
- ISSN
- EISSN
- Issue
- Volume
- References
Filter
- Title
- Author
- Author Affiliations
- Full Text
- Abstract
- Keyword
- DOI
- ISBN
- EISBN
- ISSN
- EISSN
- Issue
- Volume
- References
NARROW
Format
Journal
Article Type
Date
1-4 of 4
G E Lyons
Close
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
Sort by
Journal Articles
Journal:
Journal of Cell Biology
Journal of Cell Biology (1992) 119 (4): 811–821.
Published: 15 November 1992
Abstract
The spatial and temporal expression of the dystrophin gene has been examined during mouse embryogenesis, using in situ hybridization on tissue sections with a probe from the 5' end of the dystrophin coding sequence. In striated muscle, dystrophin transcripts are detectable from about 9 d in the heart and slightly later in skeletal muscle. However, there is an important difference between the two types of muscle: the heart is already functional as a contractile organ before the appearance of dystrophin transcripts, whereas this is not the case in skeletal muscle, where dystrophin and myosin heavy chain transcripts are first detectable at the same time. In the heart, dystrophin transcripts accumulate initially in the outflow tract and, at later stages, in both the atria and ventricles. In skeletal muscle, the gene is expressed in all myocytes irrespective of fiber type. In smooth muscle dystrophin transcripts are first detectable from 11 d post coitum in blood vessels, and subsequently in lung bronchi and in the digestive tract. The other major tissue where the dystrophin gene is expressed is the brain, where transcripts are clearly detectable in the cerebellum from 13 d. High-level expression of the gene is also seen in particular regions of the forebrain involved in the regulation of circadian rhythms, the endocrine system, and olfactory function, not previously identified in this context. The findings are discussed in the context of the pathology of Duchenne muscular dystrophy.
Journal Articles
Journal:
Journal of Cell Biology
Journal of Cell Biology (1991) 113 (6): 1255–1265.
Published: 15 June 1991
Abstract
The spatial and temporal expression pattern of the muscle regulatory gene Myf-6 (MRF4/herculin) has been investigated by in situ hybridization during embryonic and fetal mouse development. Here, we report that the Myf-6 gene shows a biphasic pattern of expression. Myf-6 transcripts are first detected in the most rostral somites of the mouse embryo at 9 d of gestation and accumulate progressively in myotomal cells along the rostro-caudal axis. This expression is transient and Myf-6 mRNA can no longer be detected in myotomal cells after day 12 post coitum (p.c.). In contrast to other muscle determination genes (MyoD1, myogenin, Myf-5), Myf-6 mRNA is not detected in limb buds or visceral arches and skeletal muscle of the mouse embryo (day 8-15 p.c.). In fetal mice, Myf-6 transcripts appear at day 16 p.c. in all skeletal muscles, and the gene continues to be expressed at a high level after birth. These results suggest that early Myf-6 expression may be restricted to a population of myogenic cells that does not contribute to the embryonic muscle masses in limb buds and visceral arches. The reappearance of Myf-6 mRNA in fetal skeletal muscle coincides approximately with secondary muscle fiber formation and the onset of innervation.
Journal Articles
Journal:
Journal of Cell Biology
Journal of Cell Biology (1990) 111 (6): 2427–2436.
Published: 01 December 1990
Abstract
Expression of the two isoforms of cardiac myosin heavy chain (MHC), MHC alpha and MHC beta, in mammals is regulated postnatally by a variety of stimuli, including serum hormone levels. Less is known about the factors that regulate myosin gene expression in rapidly growing cardiac muscle in embryos. Using isoform-specific 35S-labeled cRNA probes corresponding to the two MHC genes and the two myosin alkali light chain (MLC) genes expressed in cardiac muscle, we have investigated the temporal and spatial pattern of expression of these different genes in the developing mouse heart by in situ hybridization. Between 7.5 and 8 d post coitum (p.c.), the newly formed cardiac tube begins to express MHC alpha, MHC beta, MLC1 atrial (MLC1A), and MLC1 ventricular (MLC1V) gene transcripts at high levels throughout the myocardium. As a distinct ventricular chamber forms between 8 and 9 d p.c., MHC beta mRNAs begin to be restricted to ventricular myocytes. This process is complete by 10.5 d p.c. During this time, MHC alpha mRNA levels decrease in ventricular muscle cells but continue to be expressed at high levels in atrial muscle cells. MHC alpha transcripts continue to decrease in ventricular myocytes until 16 d p.c., when they are detectable at low levels, but then increase, and finally replace MHC beta mRNAs in ventricular muscle by 7 d after birth. Like MHC beta, MLC1V transcripts become restricted to ventricular myocytes, but at a slower rate. MLC1V mRNAs continue to be detected at low levels in atrial cells until 15.5 d p.c. MLC1A mRNA levels gradually decrease but are still detectable in ventricular cells until a few days after birth. This dynamic pattern of changes in the myosin phenotype in the prenatal mouse heart suggests that there are different regulatory mechanisms for cell-specific expression of myosin isoforms during cardiac development.
Journal Articles
Journal:
Journal of Cell Biology
Journal of Cell Biology (1990) 111 (4): 1465–1476.
Published: 01 October 1990
Abstract
Using in situ hybridization, we have investigated the temporal sequence of myosin gene expression in the developing skeletal muscle masses of mouse embryos. The probes used were isoform-specific, 35S-labeled antisense cRNAs to the known sarcomeric myosin heavy chain and myosin alkali light chain gene transcripts. Results showed that both cardiac and skeletal myosin heavy chain and myosin light chain mRNAs were first detected between 9 and 10 d post coitum (p.c.) in the myotomes of the most rostral somites. Myosin transcripts appeared in more caudal somites at later stages in a developmental gradient. The earliest myosin heavy chain transcripts detected code for the embryonic skeletal (MHCemb) and beta-cardiac (MHC beta) isoforms. Perinatal myosin heavy chain (MHCpn) transcripts begin to accumulate at 10.5 d p.c., which is much earlier than previously reported. At this stage, MHCemb is the major MHC transcript. By 12.5 d p.c., MHCpn and MHCemb mRNAs are present to an equal extent, and by 15.5 d p.c. the MHCpn transcript is the major MHC mRNA detected. Cardiac MHC beta transcripts are always present as a minor component. In contrast, the cardiac MLC1A mRNA is initially more abundant than that encoding the skeletal MLC1F isoform. By 12.5 d p.c. the two MLC mRNAs are present at similar levels, and by 15.5 d p.c., MLC1F is the predominant MLC transcript detected. Transcripts for the ventricular/slow (MLC1V) and another fast skeletal myosin light chain (MLC3F) are not detected in skeletal muscle before 15 d p.c., which marks the beginning of the fetal stage of muscle development. This is the first stage at which we can detect differences in expression of myosin genes between developing muscle fibers. We conclude that, during the development of the myotome and body wall muscles, different myosin genes follow independent patterns of activation and accumulation. The data presented are the first detailed study of myosin gene expression at these early stages of skeletal muscle development.