Skip Nav Destination
Close Modal
Update search
Filter
- Title
- Author
- Author Affiliations
- Full Text
- Abstract
- Keyword
- DOI
- ISBN
- EISBN
- ISSN
- EISSN
- Issue
- Volume
- References
Filter
- Title
- Author
- Author Affiliations
- Full Text
- Abstract
- Keyword
- DOI
- ISBN
- EISBN
- ISSN
- EISSN
- Issue
- Volume
- References
Filter
- Title
- Author
- Author Affiliations
- Full Text
- Abstract
- Keyword
- DOI
- ISBN
- EISBN
- ISSN
- EISSN
- Issue
- Volume
- References
Filter
- Title
- Author
- Author Affiliations
- Full Text
- Abstract
- Keyword
- DOI
- ISBN
- EISBN
- ISSN
- EISSN
- Issue
- Volume
- References
Filter
- Title
- Author
- Author Affiliations
- Full Text
- Abstract
- Keyword
- DOI
- ISBN
- EISBN
- ISSN
- EISSN
- Issue
- Volume
- References
Filter
- Title
- Author
- Author Affiliations
- Full Text
- Abstract
- Keyword
- DOI
- ISBN
- EISBN
- ISSN
- EISSN
- Issue
- Volume
- References
NARROW
Format
Journal
Article Type
Date
1-2 of 2
E Grote
Close
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
Sort by
Journal Articles
Journal:
Journal of Cell Biology
Journal of Cell Biology (1996) 132 (4): 537–547.
Published: 15 February 1996
Abstract
After synaptic vesicles fuse with the plasma membrane and release their contents, vesicle membrane proteins recycle by endocytosis and are targeted to newly formed synaptic vesicles. The membrane traffic of an epitope-tagged form of VAMP-2 (VAMP-TAg) was observed in transfected cells to identify sequence requirements for recycling of a synaptic vesicle membrane protein. In the neuroendocrine PC12 cell line VAMP-TAg is found not only in synaptic vesicles, but also in endosomes and on the plasma membrane. Endocytosis of VAMP-TAg is a rapid and saturable process. At high expression levels VAMP-TAg accumulates at the cell surface. Rapid endocytosis of VAMP-TAg also occurs in transfected CHO cells and is therefore independent of other synaptic proteins. The majority of the measured endocytosis is not directly into synaptic vesicles since mutations in VAMP-TAg that enhance synaptic vesicle targeting did not affect endocytosis. Nonetheless, mutations that inhibited synaptic vesicle targeting, in particular replacement of methionine-46 by alanine, inhibited endocytosis by 85% in PC12 cells and by 35% in CHO cells. These results demonstrate that the synaptic vesicle targeting signal is also used for endocytosis and can be recognized in cells lacking synaptic vesicles.
Journal Articles
Journal:
Journal of Cell Biology
Journal of Cell Biology (1990) 110 (5): 1693–1703.
Published: 01 May 1990
Abstract
The presence of unique proteins in synaptic vesicles of neurons suggests selective targeting during vesicle formation. Endocrine, but not other cells, also express synaptic vesicle membrane proteins and target them selectively to small intracellular vesicles. We show that the rat pheochromocytoma cell line, PC12, has a population of small vesicles with sedimentation and density properties very similar to those of rat brain synaptic vesicles. When synaptophysin is expressed in nonneuronal cells, it is found in intracellular organelles that are not the size of synaptic vesicles. The major protein in the small vesicles isolated from PC12 cells is found to be synaptophysin, which is also the major protein in rat brain vesicles. At least two of the minor proteins in the small vesicles are also known synaptic vesicle membrane proteins. Synaptic vesicle-like structures in PC12 cells can be shown to take up an exogenous bulk phase marker, HRP. Their proteins, including synaptophysin, are labeled if the cells are surface labeled and subsequently warmed. Although the PC12 vesicles can arise by endocytosis, they seem to exclude the receptor-mediated endocytosis marker, transferrin. We conclude that PC12 cells contain synaptic vesicle-like structures that resemble authentic synaptic vesicles in physical properties, protein composition and endocytotic origin.