Skip Nav Destination
Close Modal
Update search
Filter
- Title
- Author
- Author Affiliations
- Full Text
- Abstract
- Keyword
- DOI
- ISBN
- EISBN
- ISSN
- EISSN
- Issue
- Volume
- References
Filter
- Title
- Author
- Author Affiliations
- Full Text
- Abstract
- Keyword
- DOI
- ISBN
- EISBN
- ISSN
- EISSN
- Issue
- Volume
- References
Filter
- Title
- Author
- Author Affiliations
- Full Text
- Abstract
- Keyword
- DOI
- ISBN
- EISBN
- ISSN
- EISSN
- Issue
- Volume
- References
Filter
- Title
- Author
- Author Affiliations
- Full Text
- Abstract
- Keyword
- DOI
- ISBN
- EISBN
- ISSN
- EISSN
- Issue
- Volume
- References
Filter
- Title
- Author
- Author Affiliations
- Full Text
- Abstract
- Keyword
- DOI
- ISBN
- EISBN
- ISSN
- EISSN
- Issue
- Volume
- References
Filter
- Title
- Author
- Author Affiliations
- Full Text
- Abstract
- Keyword
- DOI
- ISBN
- EISBN
- ISSN
- EISSN
- Issue
- Volume
- References
NARROW
Format
Journal
Article Type
Date
1-2 of 2
D M Roberts
Close
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
Sort by
Journal Articles
Journal:
Journal of Cell Biology
Journal of Cell Biology (1990) 111 (5): 1867–1876.
Published: 01 November 1990
Abstract
The yolk sac of the fetal rat and the proximal small intestine of the neonatal rat selectively transport maternal IgG. IgG-Fc receptors are thought to mediate transport across the epithelium of both tissues. We used a mouse mAb (MC-39) against the 45-54-kD component of the Fc receptor of the neonatal intestine to find an antigenically related protein that might function as an Fc receptor in fetal yolk sac. In immunoblots of yolk sac, MC-39 recognized a protein band with apparent molecular mass of 54-58 kD. MC-39 bound to the endoderm of yolk sac in immunofluorescence studies. In immunogold-labeling experiments MC-39 was associated mainly with small vesicles in the apical cytoplasm and in the region near the basolateral membrane of endodermal cells. The MC-39 cross-reactive protein and beta 2-microglobulin, a component of the intestinal Fc receptor, were copurified from detergent-solubilized yolk sac by an affinity purification that selected for proteins which, like the intestinal receptor, bound to IgG at pH 6.0 and eluted at pH 8.0. In summary, the data suggest that we have isolated the Fc receptor of the yolk sac and that this receptor is structurally and functionally related to the Fc receptor of the neonatal intestine. An unexpected finding is that, unlike the intestinal receptor which binds maternal IgG on the apical cell surface, the yolk sac receptor appears to bind IgG only within apical compartments which we suggest represent the endosomal complex.
Journal Articles
Journal:
Journal of Cell Biology
Journal of Cell Biology (1983) 97 (5): 1644–1647.
Published: 01 November 1983
Abstract
Purified chloroplasts from spinach and pea leaves were subfractionated into envelope, thylakoid, and stroma fractions and were analyzed for calmodulin-binding proteins using a 125I-calmodulin gel overlay assay. Calmodulin binding was primarily associated with a major polypeptide (Mr 33,000) in the envelope membrane fraction. In contrast, major calmodulin-binding proteins were not detected in the thylakoid or stroma fractions. Our results provide the first evidence of calmodulin-binding proteins in the chloroplast envelope, and raise the possibility that calmodulin may contribute to the regulation of chloroplast function through its interaction with calmodulin-binding proteins in the chloroplast envelope. In addition, our results combined with those of other investigators support the proposal that subcellular organelles may be a primary site of calmodulin action.