Skip Nav Destination
Close Modal
Update search
Filter
- Title
- Author
- Author Affiliations
- Full Text
- Abstract
- Keyword
- DOI
- ISBN
- EISBN
- ISSN
- EISSN
- Issue
- Volume
- References
Filter
- Title
- Author
- Author Affiliations
- Full Text
- Abstract
- Keyword
- DOI
- ISBN
- EISBN
- ISSN
- EISSN
- Issue
- Volume
- References
Filter
- Title
- Author
- Author Affiliations
- Full Text
- Abstract
- Keyword
- DOI
- ISBN
- EISBN
- ISSN
- EISSN
- Issue
- Volume
- References
Filter
- Title
- Author
- Author Affiliations
- Full Text
- Abstract
- Keyword
- DOI
- ISBN
- EISBN
- ISSN
- EISSN
- Issue
- Volume
- References
Filter
- Title
- Author
- Author Affiliations
- Full Text
- Abstract
- Keyword
- DOI
- ISBN
- EISBN
- ISSN
- EISSN
- Issue
- Volume
- References
Filter
- Title
- Author
- Author Affiliations
- Full Text
- Abstract
- Keyword
- DOI
- ISBN
- EISBN
- ISSN
- EISSN
- Issue
- Volume
- References
NARROW
Format
Journal
Article Type
Date
1-2 of 2
B Allet
Close
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
Sort by
Journal Articles
B Allet, A Hochmann, I Martinou, A Berger, M Missotten, B Antonsson, R Sadoul, J C Martinou, L Bernasconi
Journal:
Journal of Cell Biology
Journal of Cell Biology (1996) 135 (2): 479–486.
Published: 15 October 1996
Abstract
We have compared the behavior of wild-type mouse NEDD-2, a neural precursor cell-expressed, developmentally down-regulated cysteine protease gene, to various mutant forms of the gene in both apoptotic activity in neuronal cells and proteolytic cleavage in the Semliki Forest virus and rabbit reticulocyte protein expression systems. Our results confirm that NEDD-2 processing and apoptotic activity are linked phenomena. They identify aspartate residues as likely targets for autocatalytic cleavage. They establish that cleavage events only occur at specific sites. Finally, they pinpoint differential effects of individual mutations on the overall proteolytic cleavage patterns, raising interesting questions related to the mechanisms of subunit assembly.
Journal Articles
Journal:
Journal of Cell Biology
Journal of Cell Biology (1995) 128 (1): 201–208.
Published: 01 January 1995
Abstract
To study molecular mechanisms underlying neuronal cell death, we have used sympathetic neurons from superior cervical ganglia which undergo programmed cell death when deprived of nerve growth factor. These neurons have been microinjected with expression vectors containing cDNAs encoding selected proteins to test their regulatory influence over cell death. Using this procedure, we have shown previously that sympathetic neurons can be protected from NGF deprivation by the protooncogene Bcl-2. We now report that the E1B19K protein from adenovirus and the p35 protein from baculovirus also rescue neurons. Other adenoviral proteins, E1A and E1B55K, have no effect on neuronal survival. E1B55K, known to block apoptosis mediated by p53 in proliferative cells, failed to rescue sympathetic neurons suggesting that p53 is not involved in neuronal death induced by NGF deprivation. E1B19K and p35 were also coinjected with Bcl-Xs which blocks Bcl-2 function in lymphoid cells. Although Bcl-Xs blocked the ability of Bcl-2 to rescue neurons, it had no effect on survival that was dependent upon expression of E1B19K or p35.