The nonproliferating chicken liver cell culture system described yields cell monolayers with morphological and lipogenic properties characteristic of the physiological-nutritional state of donor animals. Synthesis and secretion of fatty acid, cholesterol, and very low density lipoprotein (VLDL) occur at in vivo rates and respond to hormones and agents which affect these processes in vivo. Cells derived from fed chickens maintain high rates of synthesis of fatty acid and cholesterol for several days if insulin is present in the medium. High rates of fatty acid synthesis are correlated with the appearance of membrane-enclosed triglyceride-rich vesicles in the cytoplasm; deletion of insulin causes a decrease (T1/2 = 22 h) in fatty acid synthetic activity. Addition of glucagon or cyclic AMP (cAMP) causes an immediate cessation of fatty acid synthesis and blocks the appearance of the triglyceride-rich vesicles. Fatty acid synthesis in liver cells prepared from fasted chickens is less than 5% that of cells from fed animals. After 2-3 days in culture with serum-free medium containing insulin +/- triiodothyronine, fatty acid synthesis is restored to normal; glucagon or dibutyryl cAMP blocks this recovery. Liver cells derived from estradiol-treated chickens synthesize and secrete VLDL for at least 48 h in culture. Electron micrographs of these cells reveal more extensive development of the rough endoplasmic reticulum and Golgi complex compared to cells from untreated chickens. Whereas [3H]leucine incorporation into total protein is unaffected by estrogen treatment, [3H]leucine incorporation into cellular and secreted immunoprecipitable VLDL is markedly increased indicating specific activation of VLDL apopeptide synthesis; 8-10% of the labeled protein synthesized and secreted is VLDL. Dodecyl sulfate-acrylamide gel electrophoresis of immunoprecipitated 3H-VLDL reveals three major apopepetides of 300,000, 11,000, and 8,000 daltons corresponding to those of purified chicken VLDL.

This content is only available as a PDF.