Histochemical reactions and radioautography were used to investigate the sequence of mast cell development in rat embryos. Mast cells arise ubiquitously in and are confined to the loose connective tissue in the embryo. The alcian blue-safranin reaction distinguishes between weakly sulfated and strongly sulfated mucopolysaccharides by a shift from alcian blue to safranin staining. Based on this reaction and morphologic characteristics, four stages were identified. Stage I mast cells are lymphocyte-like cells with cytoplasmic granules which invariably stain blue with the alcian blue-safranin reaction. In Stage II cells the majority of granules are alcian blue-positive, but some safranin-positive granules have appeared. Stage III mast cells are distinguished by a majority of safranin-positive cytoplasmic granules; some alcian blue-positive granules still remain. Stage IV cells contain only safranin-positive granules. Thymidine-H3 uptake and identification of mitotic figures indicates that mast cells in Stages I and II comprise a mitotic pool while those in Stages III and IV are mitotically inactive. The pattern of S35O4 incorporation and the sequence of appearance of histochemically identifiable mast cell constituents corroborates division of the proliferation and differentiation of embryonic mast cells into the four stages described above. The process of formation of mast cell granules is interpreted as reflecting the synthesis and accumulation of a heparin precursor in alcian blue positive granules followed by the synthesis and accumulation of highly N-sulfated heparin along with mast cell chymase and finally histamine in safranin-positive granules.

This content is only available as a PDF.