Interactions between actin filaments and microtubules (MTs) are essential, but how those mechanisms are orchestrated in complex developing systems is poorly understood. Here we show that actin–MT cross talk regulates actin cable assembly and the assembly and organization of MTs in Drosophila nurse cells during oogenesis. We found that a stable, acetylated MT meshwork develops concurrently with actin cable initiation and requires acetylation for its maintenance. These γ-tubulin–nucleated MTs appear to be cortically tethered via Patronin and Shortstop, extend into the cytoplasm, and coalign with the elongating actin cables. We showed that this MT network is required for actin cable initiation and elongation. We further demonstrated that actin filament assembly via Diaphanous and Enabled promotes cortical tethering of MTs and that loss of the actin filament bundlers Quail/Villin, Singed/Fascin, and Fimbrin resulted in fewer, shorter, and more highly coaligned MTs. Together, our data reveal multiple modes of coordinated actin–MT cross talk that are instrumental for oogenesis.

This article is distributed under the terms as described at https://rupress.org/pages/terms102024/.
You do not currently have access to this content.