NAP1 is a 60-kD protein that interacts specifically with mitotic cyclins in budding yeast and frogs. We have examined the ability of the yeast mitotic cyclin Clb2 to function in cells that lack NAP1. Our results demonstrate that Clb2 is unable to carry out its full range of functions without NAP1, even though Clb2/p34CDC28-associated kinase activity rises to normal levels. In the absence of NAP1, Clb2 is unable to efficiently induce mitotic events, and cells undergo a prolonged delay at the short spindle stage with normal levels of Clb2/p34CDC28 kinase activity. NAP1 is also required for the ability of Clb2 to induce the switch from polar to isotropic bud growth. As a result, polar bud growth continues during mitosis, giving rise to highly elongated cells. Our experiments also suggest that NAP1 is required for the ability of the Clb2/p34CDC28 kinase complex to amplify its own production, and that NAP1 plays a role in regulation of microtubule dynamics during mitosis. Together, these results demonstrate that NAP1 is required for the normal function of the activated Clb2/p34CDC28 kinase complex, and provide a step towards understanding how cyclin-dependent kinase complexes induce specific events during the cell cycle.

This content is only available as a PDF.