Antibodies to CD44 have been used to inhibit a variety of processes which include lymphohemopoiesis, lymphocyte migration, and tumor metastasis. Some, but not all, CD44-mediated functions derive from its ability to serve as a receptor for hyaluronan (HA). However, sites on CD44 that interact with either ligands or antibodies are poorly understood. Interspecies rat/mouse CD44 chimeras were used to analyze the specificity of 25 mAbs and to determine that they recognize at least seven epitopes. Amino acid substitutions that resulted in loss of antibody recognition were all located in the region of homology to other cartilage link family proteins. While at least five epitopes were eliminated by single amino acid replacements, multiple residues had to be changed to destroy binding by other antibodies. One antibody was sensitive to changes in any of three separate parts of the molecule and some antibodies to distinct epitopes cross-blocked each other. Certain antibodies had the ability to increase HA binding by lymphocytes but this did not correlate absolutely with antibody specificity and was only partially attributable to CD44 cross-linking. Antibodies that consistently blocked HA recognition were all sensitive to amino acid changes within a short stretch of CD44. Such blocking antibodies interacted with CD44 more strongly than ligand in competition experiments. One large group of antibodies blocked ligand binding, but only with a particular cell line. This detailed analysis adds to our understanding of functional domains within CD44 and requirements for antibodies to influence recognition of one ligand.

This content is only available as a PDF.