The extracellular matrix glycoprotein tenascin-R (TN-R) is a multidomain protein implicated in neural cell adhesion. To analyze the structure-function relationship of the different domains of TN-R, several recombinant TN-R fragments were expressed in bacterial cells. Two distinct binding regions were localized on the TN-R polypeptide: a region binding the axon-associated immunoglobulin (Ig)-like F11 protein and a cell attachment site. The binding region of the glycosylphosphatidylinositol (GPI)-anchored F11 was allocated to the second and third fibronectin type III (FNIII)-like domain within TN-R. By using a mutant polypeptide of F11 containing only Ig-like domains, a direct interaction between the Ig-like domains of F11 and FNIII-like domains 2-3 of TN-R was demonstrated. The interaction of TN-R with F11 in in vitro cultures enhanced F11-mediated neurite outgrowth, suggesting that the combined action of F11 and TN-R might be of regulatory influence on axon extension. A cell attachment region was identified in the FNIII-like domain eight of TN-R by domain-specific antibodies and fusion constructs. This site is distinct from the F11 binding site within TN-R.

This content is only available as a PDF.