We have used an in vitro fusion assay to study the mechanisms of transport from early to late endosomes. Our data show that the late endosomes share with the early endosomes a high capacity to undergo homotypic fusion in vitro. However, direct fusion of early with late endosomes does not occur. We have purified vesicles which are intermediates during transport from early to late endosomes in vivo, and analyzed their protein composition in two-dimensional gels. In contrast to either early or late endosomes, these vesicles do not appear to contain unique proteins. Moreover, these vesicles undergo fusion with late endosomes in vitro, but not with each other or back with early endosomes. In vitro, fusion of these endosomal vesicles with late endosomes is stimulated by polymerized microtubules, consistent with the known role of microtubules during early to late endosome transport in vivo. In contrast, homotypic fusion of early or late endosomes is microtubule-independent. Finally, this stimulation by microtubules depends on microtubule-associated proteins and requires the presence of the minus-end directed motor cytoplasmic dynein, but not the plus-end directed motor kinesin, in agreement with the microtubule organization in vivo. Our data strongly suggest that early and late endosomes are separate, highly dynamic organelles, which are connected by a microtubule-dependent vesicular transport step.

This content is only available as a PDF.