The influence of J1/tenascin adsorbed to polyornithine-conditioned plastic (substrate-bound J1/tenascin) and J1/tenascin present in the culture medium (soluble J1/tenascin) on neurite outgrowth was studied with cultured single cells from hippocampus and mesencephalon of embryonic rats. Neurons at low density grew well on J1/tenascin substrates and extended neurites that were approximately 40% longer than on the polyornithine control substrate after 24 h in vitro. The neurite outgrowth promoting effect of substrate bound J1/tenascin was largely abolished in the presence of mAb J1/tn2, but not by mAb J1/tn1. In contrast to the neurite growth-promoting effects of substrate bound J1/tenascin, neurite outgrowth on polyornithine, laminin, fibronectin, or J1/tenascin as substrates was inhibited by addition of soluble J1/tenascin to the cultures. Neither of the two mAbs neutralized the neurite outgrowth-inhibitory properties of soluble J1/tenascin. In contrast to their opposite effects on neurite outgrowth, both substrate-bound and soluble J1/tenascin reduced spreading of the neuronal cell bodies, suggesting that the neurite outgrowth-promoting and antispreading effects are mediated by two different sites on the molecule. This was further supported by the inability of the mAb J1/tn2 to neutralize the antispreading effect. The J1/tn2 epitope localizes to a fibronectin type III homology domain that is presumably distinct from the putative Tn68 cell-binding domain of chicken tenascin for fibroblasts, as shown by electronmicroscopic localization of antibody binding sites. We infer from these experiments that J1/tenascin contains a neurite outgrowth promoting domain that is distinguishable from the cell-binding site and presumably not involved in the inhibition of neurite outgrowth or cell spreading. Our observations support the notion that J1/tenascin is a multifunctional extracellular matrix molecule.
Article|
June 01 1991
J1/tenascin in substrate-bound and soluble form displays contrary effects on neurite outgrowth.
A Lochter,
A Lochter
Department of Neurobiology, University of Heidelberg, Germany.
Search for other works by this author on:
L Vaughan,
L Vaughan
Department of Neurobiology, University of Heidelberg, Germany.
Search for other works by this author on:
A Kaplony,
A Kaplony
Department of Neurobiology, University of Heidelberg, Germany.
Search for other works by this author on:
A Prochiantz,
A Prochiantz
Department of Neurobiology, University of Heidelberg, Germany.
Search for other works by this author on:
M Schachner,
M Schachner
Department of Neurobiology, University of Heidelberg, Germany.
Search for other works by this author on:
A Faissner
A Faissner
Department of Neurobiology, University of Heidelberg, Germany.
Search for other works by this author on:
A Lochter
Department of Neurobiology, University of Heidelberg, Germany.
L Vaughan
Department of Neurobiology, University of Heidelberg, Germany.
A Kaplony
Department of Neurobiology, University of Heidelberg, Germany.
A Prochiantz
Department of Neurobiology, University of Heidelberg, Germany.
M Schachner
Department of Neurobiology, University of Heidelberg, Germany.
A Faissner
Department of Neurobiology, University of Heidelberg, Germany.
Online ISSN: 1540-8140
Print ISSN: 0021-9525
J Cell Biol (1991) 113 (5): 1159–1171.
Citation
A Lochter, L Vaughan, A Kaplony, A Prochiantz, M Schachner, A Faissner; J1/tenascin in substrate-bound and soluble form displays contrary effects on neurite outgrowth.. J Cell Biol 1 June 1991; 113 (5): 1159–1171. doi: https://doi.org/10.1083/jcb.113.5.1159
Download citation file: