A morphological analysis of the compartments of the endocytic pathway in baby hamster kidney (BHK) cells has been made using the fluid-phase marker horseradish peroxidase (HRP). The endocytic structures labeled after increasing times of endocytosis have been identified and their volume and surface densities measured. In the first 2 min of HRP uptake the volume density of the labeled structures increased rapidly and thereafter remained constant for the next 13-18 min. This plateau represents the volume density of endosome organelles and accounts for 0.65% of the cytoplasmic volume (or 6.8 microns 3 per cell). The labeled structures consist of tubular-cisternal elements which are frequently observed in continuity with 300-400 nm vesicles. After 15-20 min of internalization the volume density of HRP-labeled structures again increased rapidly and reached a second plateau between 30 and 60 min of labeling. This second increase corresponded to detectable levels of HRP reaching later, acid phosphatase (AcPase)-reactive compartments. These structures, comprising the prelysosomes and lysosomes, were mostly vesicular and collectively accounted for 3.5% of the cytoplasmic volume (or 37 microns 3 per cell). The absolute peripheral surface areas of the two classes of organelles (endosomes and prelysosomes/lysosomes) were estimated to be 430 and 370 microns 2 per cell, respectively. The volume of fluid internalized in the first 2 min of uptake was five- to sevenfold less than the volume of the compartment labeled in this time. To account for these results we propose that, after uptake from the cell surface, HRP is delivered to, and diluted in, endosomes that are preexisting organelles initially devoid of the marker. With increasing times of endocytosis the concentration of HRP in the early endosomes increases, as more of the marker enters this compartment. An elevation in HRP concentration in endosomes during the early time points was shown directly using anti-HRP antibodies and colloidal gold on cryosections. The stereological values given in the present study, in combination with earlier studies, provide a minimum estimate for both the total surface area of membranes and the rate of membrane synthesis in a BHK cell.

This content is only available as a PDF.