Nuclear migration was studied in germinating conidia of a temperature-sensitive mutant of the fungus Aspergillus nidulans. At the restrictive temperature motility was demonstrably impaired because significantly fewer nuclei migrated into the germ tube relative to a population of similarly sized germlings grown at the permissive temperature. Further comparison of these populations showed that the mutant was leaky in that an increasing number of nuclei migrated as the total nuclear content increased in each germling. The restrictive temperature also induced elevated mitotic asynchrony and increased numbers of nuclei per germling. Serial section-based reconstruction of the microtubules in a freeze-substituted germling showed that they were not attached to the nucleus-associated organelles, were approximately parallel to the long axis of the germ tube, and seemed to be randomly distributed between the central and peripheral cytoplasm. Five germlings from each temperature were selected for quantitative analysis of cytoplasmic microtubules. All 10 germlings had typical nuclear migration phenotypes. No significant temperature-related difference in microtubule density was found. We conclude that inhibition of nuclear migration in the mutant is the effect of some defect other than the failure of cytoplasmic microtubules to assemble to their normal population density. We also suggest that nuclear motility is not dependent on mitosis-related microtubules.

This content is only available as a PDF.