Anchoring fibrils are specialized fibrous structures found in the subbasal lamina underlying epithelia of several external tissues. Based upon their sensitivity to collagenase and the similarity in banding pattern to artificially created segment-long spacing crystallites (SLS) of collagens, several authors have suggested that anchoring fibrils are lateral aggregates of collagenous macromolecules. We recently reported the similarity in length and banding pattern of anchoring fibrils to type VII collagen SLS crystallites. We now report the construction and characterization of a murine monoclonal antibody specific for type VII collagen. The epitope identified by this antibody has been mapped to the carboxyl terminus of the major helical domain of this molecule. The presence of type VII collagen as detected by indirect immunofluorescence in a variety of tissues corresponds exactly with ultrastructural observations of anchoring fibrils. Ultrastructural immunolocalization of type VII collagen using a 5-nm colloidal gold-conjugated second antibody demonstrates metal deposition upon anchoring fibrils at both ends of these structures, as predicted by the location of the epitope on type VII collagen. Type VII collagen is synthesized by primary cultures of amniotic epithelial cells. It is also produced by KB cells (an epidermoid carcinoma cell line) and WISH (a transformed amniotic cell line).

This content is only available as a PDF.