We have examined the phosphorylation of cellular microtubule proteins during differentiation and neurite outgrowth in N115 mouse neuroblastoma cells. N115 differentiation, induced by serum withdrawal, is accompanied by a fourfold increase in phosphorylation of a 54,000-mol-wt protein identified as a specific isoform of beta-tubulin by SDS PAGE, two-dimensional isoelectric focusing/SDS PAGE, and immunoprecipitation with a specific monoclonal antiserum. Isoelectric focusing/SDS PAGE of [35S]methionine-labeled cell extracts revealed that the phosphorylated isoform of beta-tubulin, termed beta 2, is one of three isoforms detected in differentiated N115 cells, and is diminished in amounts in the undifferentiated cells. Taxol, a drug which promotes microtubule assembly, stimulates phosphorylation of beta-tubulin in both differentiated and undifferentiated N115 cells. In contrast, treatment of differentiated cells with either colcemid or nocodazole causes a rapid decrease in beta-tubulin phosphorylation. Thus, the phosphorylation of beta-tubulin in N115 cells is coupled to the levels of cellular microtubules. The observed increase in beta-tubulin phosphorylation during differentiation then reflects developmental regulation of microtubule assembly during neurite outgrowth, rather than developmental regulation of a tubulin kinase activity.

This content is only available as a PDF.