The intestinal epithelial cell and specifically the cytoskeleton of the brush border are thought to be controlled by micromolar levels of free calcium. Calcium-binding proteins of this system include intestinal calcium binding protein (CaBP), calmodulin (CaM), villin, and a 36,000-mol-wt protein substrate of tyrosine kinases. To assess the sequence of events as the intracellular Ca++ level rises, we determined the amount of CaM and CaBP in the intestinal epithelium by western blotting and tested the Ca++ binding of CaM and CaBP by equilibrium dialysis. The Ca++-dependent actin severing activity of villin was analyzed in the presence of physiological CaM levels and increasing calcium concentrations. In addition, we analyzed the Ca++ levels required for interaction between CaM and the microvillus 110,000-mol-wt protein as well as fodrin and the interaction between a polypeptide of 36,000 mol wt (P-36) and actin. The results suggest that CaBP serves as the predominant Ca++ buffer in the cell, but CaM can effectively buffer ionic calcium in the microvillus and thus protect actin from the severing activity of villin. CaM binds to its cytoskeletal receptors, 110,000-mol-wt protein and fodrin differently, governed by the free Ca++ and pH. The interaction between P-36 and actin, however, appears to require an unphysiologically high calcium concentration (10(-4) to 10(-3) M) to be meaningful. The results provide a coherent picture of the different Ca++ regulated events occurring when the free calcium rises into the micromolar level in this unique system. This study would suggest that as the Ca++ rises in the intestinal epithelial cell an ordered sequence of Ca++ saturation of intracellular receptors occurs with the order from the lowest to highest Ca++ requirements being CaBP less than CaM less than villin less than P-36.

This content is only available as a PDF.