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Abstract. Neurofilaments (NFs), which are composed 
of NF-L, NF-M, and NF-H, are required for the devel- 
opment of normal axonal caliber, a property that in 
turn is a critical determinant of axonal conduction ve- 
locity. To investigate how each subunit contributes to 
the radial growth of axons, we used transgenic mice to 
alter the subunit composition of NFs. Increasing each 
NF subunit individually inhibits radial axonal growth, 
while increasing both NF-M and NF-H reduces growth 

even more severely. An increase in NF-L results in an 
increased filament number but reduced interfilament 
distance. Conversely, increasing NF-M, NF-H, or both 
reduces filament number, but does not alter nearest 
neighbor interfilament distance. Only a combined in- 
crease of NF-L with either NF-M or NF-H promotes ra- 
dial axonal growth. These results demonstrate that both 
NF-M and NF-H play complementary roles with NF-L 
in determining normal axonal calibers. 

T nE development of mature axonal morphology can 
be viewed as a two-phase process. In the first, the 
axon elongates to establish a physical contact with 

its target. In the second, the axon grows by up to 10-fold in 
diameter (100-fold in volume), a feature that is necessary 
for the propagation of action potentials at an appropriate 
speed along the axon (Arbuthnott et al., 1980). Neurofila- 
ments (NFs) 1 play a crucial role in radial growth. The ini- 
tial evidence for this was derived from a direct correlation 
between the axonal diameter and the number of NFs dur- 
ing all phases of radial axonal growth (Friede and Sa- 
majorski, 1970; Hoffman et al., 1988; reviewed by Cleve- 
land et al., 1991). This has now been proven unequivocally 
by two animal models. The first of these is a quail with a 
spontaneous mutation in NF-L that truncates translation 
prematurely and leads to the absence of NF-L in homozy- 
gous animals (Ohara et al., 1993). The second is a trans- 
genic mouse line that expresses an NF-H subunit with 
nearly the entire 120-kD galactosidase polypeptide at- 
tached to its carboxyl terminal tail. Expression of this mu- 
tant NF-H blocks transport of all NFs into axons (Eyer 
and Peterson, 1994). Axons from both animals completely 
lack NFs, and, as a result, radial growth of those axons is 
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1. Abbreviations used in thispaper. MSV LTR, murine sarcoma virus long 
terminal repeat; NF, neurofilament. 

severely inhibited (Yamasaki et al., 1991; Sakaguchi et al., 
1993; Eyer and Peterson, 1994). 

NFs are class IV intermediate filaments composed of 
three polypeptide subunits, NF-L (61 kD), NF-M (95 kD), 
and NF-H (115 kD). Each of these subunits share a com- 
mon intermediate filament polypeptide structure: a central 
a-helical rod domain of 310 amino acids featuring heptad 
repeats capable of forming coiled-coil oligomers, a short 
amino-terminal head domain that is rich in arginine and 
serine, and a carboxyl-terminal domain of variable length 
and primary structure (for review see Shaw, 1991). Fila- 
ments assemble in vivo as obligate heteropolymers of NF-L 
and substoichiometric amounts of NF-M and/or NF-H 
(Lee et al., 1993; Ching and Liem, 1993; Wong et al., 1995). 
Although the role of NFs as intrinsic determinants of ax- 
onal caliber has been well established, the contribution of 
each individual polypeptide subunit is much less clear. 
Since NF-L is indispensable for both filament assembly 
under physiological conditions in vitro (Geisler and Weber, 
1981; Liem and Hutchison, 1982) and in vivo (Ching and 
Liem, 1993; Lee et al., 1993), one primary role for it is the 
assembly of the filament backbone. 

For NF-H, much interest has been focused on its tail do- 
main, which is longer than the entirety of all but one other 
intermediate filament subunit and which contains a strik- 
ing structural feature: 40 to 50 repeats containing the se- 
quence Lys-Ser-Pro (Lees et al., 1988; Julien et al., 1988), 
the serines of which are heavily phosphorylated (Xu, 1990; 
Elhanany et al., 1994), but only within myelinated axonal 
segments (Sternberger and Sternberger, 1983; Lee et al., 
1987, 1988). Phosphorylation correlates with wider fila- 
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ment-filament spacing (de Waegh et al., 1992; Hsieh et al., 
1994; Nixon et al., 1994; Cole et al., 1994). The tail domain 
is peripherally located as side arms projecting from the 
central core of filaments (Hirokawa et al., 1984; Hisanaga 
and Hirokawa, 1988; Mulligan et al., 1991). These proper- 
ties have led to the proposal that the principal function for 
NF-H is to interact with adjacent filaments and other or- 
ganelles, thereby establishing a wider filament spacing, 
perhaps through repulsion between the adjacent filaments 
as a result of the highly negatively charged phosphates car- 
ried by its tail (Carden et al., 1987; Matus, 1988). The func- 
tional role for NF-M is unclear, although roles in promoting 
filament elongation (Nakagawa et al., 1995) and specifying 
nearest neighbor distance between filaments have been 
proposed (Nakagawa et al., 1995; Wong et al., 1995). 

By transgenic technology, we now examine the mecha- 
nism underlying NF-dependent radial growth by changing 
the subunit composition of NFs through overexpressing 
each of the three NF subunits alone or in combination 
with each other. We find that increasing each NF subunit 
alone leads to the inhibition of radial growth. Only a com- 
bined increase of either NF-H or NF-M with NF-L pro- 
duces significantly larger axonal diameters. Neither inhibi- 
tion nor enhancement of growth correlates with changes in 
the nearest neighbor filament-filament spacing. Thus, the tail 
domains of NF-M and NF-H structure axoplasm in a man- 
ner that promotes radial growth, but essential interactions 
must include interactions between NF and other axonal 
components or between NF that are not nearest neighbors. 

Materials and Methods 

Construction of Transgenic Mice 
Construction of transgenic mice carrying the routine NF-L gene (Fig. 1 A), 
in which the authentic 5' promoter was replaced by the murine sarcoma 
virus (MSV) long terminal repeat (LTR), has been described previously 
(Monteiro et al., 1990). Construction of mice carrying a murine NF-M 
transgene (Fig. I B) in which the authentic 5' promoter was replaced by 
the MSV LTR and the carboxy-terminal 50 amino acids were substituted 
with a 12-amino acid myc epitope tag has also been described (Wong et al., 
1990, 1995). Both NF-L and NF-M lines were maintained in a C57B6 ge- 
netic background. To construct NF-H transgenic mice, a 23-kb SalI frag- 
ment of a murine NF-H genomic clone (Julien et al., 1988; see Fig. 1 C) 
was injected into fertilized mouse eggs and transgenic mice were produced 
as described by Monteiro et al. (1990). The initial founders were of 
C57B6/C3H F2 hybrid backgrounds. Both NF-L and NF-H constructs en- 
code entirely wild-type mouse proteins, while the NF-M construct encodes 
a slightly truncated NF-M molecule that is epitope tagged at its carboxyl 
terminus (see above). 

Protein Blot and Quantification 
Protein immunoblotting and quantification has been described in detail pre- 
viously (Xu et al., 1993). Briefly, mouse sciatic nerves were homogenized 
in buffer containing 25 mM sodium phosphate (pH 7.2), I mM EGTA, 1% 
SDS, and 1 mM PMSF, and protein concentration measured with the 
bicinchoninic acid assay (Pierce Chemical Co., Rockford, IL). 2-5 Ixg of 
total protein were then loaded onto 7% polyacrylamide gels, electro- 
phoresed (Laemmli, 1970), and transferred onto nitrocellulose filters as 
described (Lopata and Cleveland, 1987) using a minigel apparatus (Bio 
Rad Laboratories, Hercules, CA). The blot was then incubated with a 
mixture of antibodies recognizing each of the NF subunits: two polyclonal 
antibodies raised against the carboxyl-terminai 12 amino acids of NF-H 
and NF-L, respectively (Xu et al., 1993), and an mAb against NF-M (Boeh- 
ringer Mannheim Biochemicals, Indianapolis, IN). Detection of each 
polypeptide band was carried out by first incubating the filter with a goat 
anti-rabbit IgG or rabbit anti-mouse IgG polyclonal antibodies (Sigma 

Immunochemicals, St. Louis, MO), followed by incubation with 12SI-labeled 
protein A (Amersham Corp., Arlington Heights, IL). The amount of pro- 
tein in each band was quantified by phosphorimaging (Molecular Dynam- 
ics, Sunnyvale, CA) and comparing a dilution series of standards of known 
amounts of partially purified mouse NF proteins that had been immuno- 
blotted in parallel. 

Tissue Processing and EM 
Mouse tissues were initially fixed by intracardiac perfusion with a solution 
of 0.1 M sodium phosphate, pH 7.6, 4% paraformaldehyde, and 2.5% glu- 
taraldehyde followed by further fixation by immersion in the same fixative 
for 24 h at 4°C. Ventral roots were isolated according to Sidman et al. 
(1971), postfixed with 2% osmium tetroxide in 0.1 M phosphate buffer for 
2 h, dehydrated in graded alcohols, and embedded in Epon-Araldite resin 
(EM Sciences, Fort Washington, PA). 1-/~m sections were stained with 
toluidine blue and examined by light microscopy; thin sections were then 
cut, stained with uranyl acetate and lead citrate, examined, and photo- 
graphed in a Hitachi H-600 EM. 

Morphometric Analysis 
For measuring axonal diameters, microscopic video images of transverse 
sections of L5 ventral root (1 i~m thick, stained with toluidine blue) at a 
magnification of 100 were digitized using a frame grabber board (Targa 
M8) and image analysis software (Bioquant; R&M Biometrics, Memphis, 
TN). The cross-sectional areas of myelinated axons >1.5 p~m 2 were mea- 
sured in continuous nonoverlapping fields with center-of-gravity exclusion 
to avoid double counting. The illumination and optimum grey-scale pixel 
value for discrimination of the myelin/axon border was independently 
chosen for each field to minimize systematic bias. For each axon, the re- 
sult is reported as the diameter of a circle of equivalent area. 

To measure nearest neighbor distances between neurofilaments, cross- 
sections of axons >3.0 Ixm in diameter were photographed at a magnification 
of 20,000 and were further enlarged fivefold during printing. Neurofila- 
ments were identified in these end on views as dots of ~10 nm in diame- 
ter. Positions of neurofilaments were marked by puncturing the photo- 
graphic print with a push pin. By laying the final prints on a light box, 
neurofilament positions could easily be imaged with a CCD camera and 
digitized using the Bioquant image analysis software. 

Results 

Mice Transgenic for Each of the Three NF Subunits 
Express Significantly Elevated Levels of the Respective 
NF Subunit 

To examine the role that each NF subunit contributes to 
promoting radial axonal growth, independent transgenic 
mouse lines that express significantly elevated levels of each 
of the three NF subunits in motor and sensory neurons were 
constructed using the gene constructs illustrated in Fig. 1, 
A-C. By crossing different transgenic lines, we also generated 
mice that express high levels of any pair of the three subunits. 

Transgenes encoding the mouse NF-L and NF-M sub- 
units were previously constructed by replacing the corre- 
sponding 5' promoter sequences of the murine NF-L or 
NF-M genes with the strong promoter from the MSV LTR 
(Fig. 1, A and B). An additional modification for NF-M 
was that the last 50 carboxyl-terminal amino acids were 
deleted and replaced by a 12-amino acid tag sequence 
(Wong et al., 1990, 1995). This epitope-tagged NF-M is 
fully competent for coassembly with vimentin or NF-L in 
transfected cells (Wong et al., 1990), and in nonneuronal 
cells, it mediates a ~30-nm filament-to-filament spacing 
indistinguishable from that specified by full-length NF-M 
(Nakagawa et al., 1995). As described earlier, in the NF-L 
transgenic line 58, the transgene is expressed highly in ner- 
vous tissues, although accumulation is also found in some 
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Figure 1. Gene constructs for NF transgenic lines. (,4) Transgene 
for NF-L transgenic mice (L mice): MSV LTR (marine sarcoma 
virus long terminal repeat) was used as a promoter at the 5' end 
to transcribe the authentic fragment ~4 kb that encompass all the 
coding sequence of mouse NF-L (see Monteiro et al., 1990). (B) 
Transgene for NF-M transgenic mice (M mice): Similar to L mice, 
the MSV-LTR was used as a promoter to transcribe the mouse 
NF-M gene. This gene was also modified at its 3' end by replacing 
the sequence coding for the last 50 amino acids and noncoding re- 
gion with the sequence coding for a 12-amino acid myc peptide 
followed by NF-L 3' untranslated region and flanking region (see 
Wong et al., 1995). (C) A 23-kb SalI fragment derived from a 
mouse NF-H cosmid clone was used to make NF-H transgenic mice 
(H mice). Arrows in A-C mark the transcription initiation sites. 
(D) NF-H accumulation, detected using an anti-NF-H polyclonal 
antibody (Xu et al., 1993) on a protein immunoblot of 10 Ixg total 
tissue protein. Lanes 1-7, NF-H expression in the eye, lung, heart, 
liver, spleen, kidney, and muscle. Lanes 8, 10, 12, and 14, NF-H 
levels in the sciatic nerve, optic nerve, cerebellum, and forebrain 
of a wild-type mouse. Lanes 9, 11, 13, and 15, NF-H levels in the 
same tissue from an H mouse. 

nonneuronal cells (Monteiro et al., 1990). Transgenic NF-M 
accumulates almost exclusively in neuronal tissues, partic- 
ularly in lower motor and sensory neurons of the periph- 
eral nervous system (Wong et al., 1995). 

For NF-H, a 23-kb fragment encompassing the entire 
mouse NF-H coding sequences, 7.5 kb of the 5' promoter 
sequence, and 1.8 kb of the 3' flanking sequence (Fig. 1 C) 
were injected into mouse embryos, and six founder lines 
were obtained and examined for the level of NF-H accu- 
mulation in the sciatic nerve. One line (No. 35) contained 

twice the normal level of NF-H m R N A  in neuronal tissue 
(not shown). Using an NF-H-specific polyclonal antibody 
(Xu et al., 1993), protein immunoblotting of the total pro- 
tein from various tissues revealed an elevated level of NF-H 
in nervous tissues, but no NF-H in the nonnervous tissue, 
indicating that the accumulation of transgenic NF-H is ner- 
vous tissue specific (Fig. 1 D). This is consistent with ner- 
vous system-specific expression seen earlier for a similar 
human NF-H transgene (Cote et al., 1993). 

To examine the extent of the increase in NF subunits in 
axons, we quantified the levels of all three NF subunits in sci- 
atic nerves. Shown in Fig. 2 are the NF subunit levels in 
6-wk-old mice generated by crossing NF-L transgenic (L 
mice) with NF-M transgenic (M mice), which yielded four 
genotypes in the littermates: normal (nontransgenic) mice, 
NF-L transgenic, NF-M transgenic, and NF-L/NF-M dou- 
bly transgenic (LM mice). Both transgenic lines, initially 
produced as C57B6/A or C57B6/C3H hybrids, were back- 
crossed for several generations into a C57B6 background. 
In both L and M mice, the respective subunits are in- 
creased by approximately twofold (Fig. 2; each data point 
represents the average between six and nine measure- 
ments from a mimimum of three animals, and standard de- 
viations are given in Table I), whereas in LM mice, the re- 
spective levels of the two subunits increased further, reaching 
threefold the wild-type levels (Fig. 2 B). In M mice, axonal 
NF-H levels fall 50%, a feature that is almost completely 
reversed by the simultaneous increase of NF-L (Fig. 2), 
consistent with the proposal that NF-M may compete with 
NF-H for coassembly or cotransport with NF-L (Wong et al., 
1995). Pairwise t tests confirmed that these differences in 
subunit content were highly significant (P < 0.01). 

NF subunit levels were also determined (Fig. 3) from 
8-wk-old mice generated by crossing L with H mice and M 
with H mice. As indicated before, multiple (six to nine) 
measurements from three different animals of each geno- 
type were obtained by immunoblotting. Relative to non- 
transgenic littermates, in L and H mice, the respective sub- 
units are increased by approximately twofold (Fig. 3 and 
Table I), while in mice transgenic for both NF-L and NF-H 
(LH mice), the respective levels for the two subunits in- 
creased further (Fig. 3 B and Table I), similar to the situa- 
tion for LM mice. (It should be also noted that the older 
age of the mice used in this analysis, as well as the different 
genetic backgrounds of the H mice [see above], combined 
to yield an increase in overall neurofilament content in the 
nontransgenic animals [compared to the 6-wk-old animals 
in the L and M mating shown in Fig. 2].) Reminiscent of the 
depression of NF-H after the increase in M mice (Fig. 2), 
increased NF-H in H mice resulted in a lower level of NF-M 
(Fig. 3 and Table I), supporting the conclusion that the 
two subunits compete for assembly and/or transport. Most 
surprising was the change in all three NF subunit levels in 
the mice doubly transgenic for NF-M and NF-H: total NF 
content was reduced by nearly half (45%) (Fig. 3). Again, 
pairwise t tests confirmed that these differences in subunit 
content were highly significant (P < 0.05). The reduction 
of the total NF content in the sciatic nerve in both H and 
MH mice reflects a reduction of NFs in axons (see below) 
and accumulation of NFs in motor neuron cell bodies 
(seen in morphological examination of the spinal cords of 
both mice [not shown]). 
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Figure 2. Changes in NF subunit content gener- 
ated by crossing L and M mice. (A) Immunoblot 
of 2.5 p~g of total proteins extracted from sciatic 
nerve of 6-wk-old mice using antibodies specific 
for each of the three NF subunits (see Materials 
and Methods). Lane 1, wild-type mice; lane 2, L 
mice; lane 3, M mice; lane 4, LM mice. Notice 
that the transgene NF-M is smaller than the en- 
dogenous NF-M (see LM lane). (B) The average 
NF content quantified by phosphorimaging 
(each point is the average of at least six indepen- 
dent determinations). 

An Increase in Each of  the Three N F  Subunits Alone 
Inhibits Radial Axonal Growth 

To test what effect altered levels of each NF subunit had 
on radial growth, axonal calibers were measured in the L5 
ventral roots of all the transgenic lines expressing higher 
levels of any single subunit or any pair of subunits. Exami- 
nation of ventral roots was chosen for three reasons. First, 
spinal motor neurons have the highest level of transgene 
expression, as indicated by the extent of NF accumulation 
in neuronal cell bodies in L, M, and H animals (Xu et al., 
1993; Wong et al., 1995; data not shown). Axons in ventral 
roots originate from the spinal motor neurons and thus are 
the optimal choice for evaluating the effect of transgene 
expression. Second, all of these axons are myelinated and 
their numbers are nearly constant among animals (960 -+ 
49 per L5 ventral root), thus making the measurement fea- 
sible and statistically significant. Third, measurement of 
NF levels in wild-type and NF-M transgenic mice have al- 
ready shown similar changes in levels of endogenous and 
transgene encoded subunits comparing ventral roots and 
sciatic nerves (Wong et al., 1995). 

To examine the effect of altered NF levels on radial 
growth, axonal calibers in 8-wk-old mice that express dif- 
ferent levels of NF-L were analyzed: wild-type, L mice 

that express twice the level of NF-L in the wild type (Mon- 
teiro et al., 1990), and doubly NF-L transgenic mice (LL 
mice) that express approximately four times the level of 
the wild type (Xu et al., 1993). (The LL mice were gener- 
ated by crossing two independent NF-L transgenic lines; 
while most of these die from skeletal muscle atrophy at or 
before 3 wk of age [Xu et al., 1993], occasional animals 
survive this critical period as transgene expression declines 
at older ages.) This analysis revealed that the size of axons 
is the largest in wild-type animals, smaller in L mice, and 
smallest in the LL mice (Fig. 4 A). Thus, at essentially con- 
stant (or even slightly elevated) levels of NF-M and NF-H 
(Figs. 2 B and 3 B and Table I), increases in NF-L result in 
reduced sizes of axons >3 ~m in diameter (Fig. 4 A). Sta- 
tistical comparison between these distributions using the 
Wolcoxon rank sum test revealed P = 0.001 for doubly or 
singly transgenic axons vs. wild type and P = 0.03 for dou- 
bly transgenic vs. singly transgenic. These values indicate 
that the differences seen are highly significant. Smaller ax- 
onal sizes are the consequence of growth inhibition, since 
reduction in axonal growth was also seen in 4-wk (not 
shown) and 6-wk-old mice (see below). Phosphorylation 

Figure 3. Changes in NF subunit content in 
8-wk-old mice generated by crossing L with H 
mice, as well as in MH mice (NF-M and NF-H 
doubly transgenic). (A) Immunoblot carried out 
the same way as described in Fig. 2. Lane 1, wild- 
type mice; lane 2, L mice; lane 3, H mice; lane 4, 
LH mice. (B) The average NF content was quan- 
tified by phosphorimaging. 
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Table L Changes in Average Axonal Cross-sectional Area Caused by Changes in NF Subunit Composition 

Level of each NF subunit relative to Molar ratio of 
its level in wild-type mice Average change in NF-M + NF-H 

Subunit cross-sectional area 
Genotype overexpressed NF-L NF-M NF-H (percent of wild type) NF-L 

Wild type - 100 100 100 - 0.61 
L NF-L 230 (-+ 44) 115 (± 34) 110 (± 34) - 4 0.30 
M NF-M 140 (-+ 17) 210 (--- 55) 50 ( -  6) - 40 0.60 
H NF-H 90 (+ 9) 45 (± 5) 180 (_ 0) - 34 0.58 
LM NF-L + NF-M 300 (+ 50) 360 (_+ 30) 90 (+-- 13) + 46 0.50 
LH NF-L + NF-H 320 (± 6) 90 (-+ 0) 300 (± 14) + 30 0.26 
MH NF-M + NF-H 45 (--- 16) 60(-  + 5) 60(± I1) - 55 0.80 

*Summary of the data shown in Figs. 2-8. 

levels of NF-H are unaffected as judged either by immu- 
noreactivity to phosphorylation specific ant ibody SMI 31 
(not shown) or by gel mobility. 

To investigate the effects of high levels of NF-M or NF-H 
on axonal caliber, similar measurements  were made in M 
and H mice. Both lines showed more striking reductions in 
the axonal caliber (Fig. 4, B and C, and Table I), compared 
to that seen for L mice (Fig. 4 A and Table I). Average 
growth in axonal volume was reduced 35--40%, respec- 
tively. As in the L mice, reduction in caliber was most ob- 
vious in axons >3  v,m. Similar findings have previously 

been  reported for M mice (Wong et al., 1995) and for mice 
expressing human  NF-H to a level 2-3-fold above mouse 
NF-H (Cote et al., 1993). In the latter case, reduction in 
axonal size is accompanied by reduction in filament con- 
tent arising, at least in part from slowing of neurof i lament  
transport  (Collard et al., 1995). 

A Combined Increase in NF-L  with Ei ther  N F - M  or 
N F - H  Stimulates Radial Axonal  Growth 

To determine what effect high levels of two NF subunits 
would have on axonal growth, caliber was measured in 
mice doubly transgenic for L and M (LM mice) or L and H 
(LH mice). Although small axons (i.e., axons <3  Ixm) 
were unchanged in number  and size, increasing NF-M to- 
gether with NF-L significantly enlarged calibers of those 
axons that normally undergo radial growth, resulting in an 
expansion of axonal volume by,'o50% (Fig. 5 A and Table I). 

Figure 4. Reduced axonal caliber as a result of increasing each of 
the three NF subunits individually. (A) An increase in NF-L inhib- 
its radial growth of axons. Distribution of axonal diameters in L5 
ventral roots of doubly (LL), singly (L) NF-L transgenic mice, or 
wild-type littermate mice (8 wk old). The mean diameters for ax- 
ons >3 txm from the LL, L, and wild-type are 5.1, 5.3, and 5.6 wm, 
respectively. (B) An increase in NF-M inhibits radial growth of ax- 
ons. The average of measurements from three animals (6 wk old) 
for both wild-type and M mice are shown. (C) An increase of NF-H 
inhibits radial growth of axons. Measurements are from 8-wk-old 
wild-type and H mice. 

Figure 5. Increased axonal caliber as a result of a combined increase 
of NF-L with either NF-M or NF-H. (A) A combined increase in 
NF-L and NF-M stimulates radial axonal growth. The average size 
distribution of axons in L5 ventral roots from three wild-type, 
three L, three M, and two LM mice (6 wk old) are shown. All the 
animals were littermates generated from crossing L with M mice. 
(B) A combined increase in NF-L and NF-H stimulates radial ax- 
onal growth. The size distribution of axons in L5 ventral roots from 
wild-type, L, H, and LH mice (8 wk old) are shown. All the ani- 
mals were littermates generated from crossing NF-L with NF-H 
transgenic mice. 
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growth of axons can be enhanced by simultaneous in- 
crease in NF-L and either NF-M or NF-H. 

Figure 6. A combined increase of NF-M with NF-H strongly in- 
hibits radial axonal growth. The average size distribution in L5 
ventral roots from analysis of one wild-type mouse and three MH 
mice are depicted. All mice were 8 wk old. 

A similar situation was seen for LH mice (Fig. 5 B). At  8 wk 
of age, LH mice displayed a 30% increase in axonal vol- 
ume (Fig. 5 B and Table I), while increasing NF-H alone 
reduced axonal volume to only ~ 6 5 %  of normal. The 
same kind of changes shown in Fig. 5 B were also observed 
in 4-wk-old mice (not shown). We conclude that radial 

Increasing Both NF-M and NF-H Most Severely 
Inhibits Radial Axonal Growth 

An attractive model for how NFs might promote radial 
growth and why increases in NF-L and NF-M or NF-L and 
NF-H yield larger axons is that cross-bridging mediated by 
the NF-M and NF-H tails establishes adjacent filament 
spacing. To test this, axonal caliber was measured in MH 
mice (Fig. 6). Not only did increasing NF-M or NF-H 
alone inhibit radial growth (Fig. 4, B and C), increasing 
both further inhibited growth, yielding the smallest axons 
among all the transgenic lines we examined (Fig. 6), with 
an average axonal diameter reduced by 24%. This corre- 
sponds to an overall reduction in axonal volume of  55%, 
compared with wild-type animals (Fig. 6 and Table I). 
These estimates of axon volume changes are minimum es- 
timates of the actual changes, since all axons (including 

Figure Z Changes in neurofilament density in the axons from different lines of transgenic mice. Examples of axoplasm viewed from ax- 
onal cross-sections are shown: (a) wild type; (b) NF-L transgenic; (c) NF-M transgenic; (d) NF-H transgenic; (e) NF-L and NF-M doubly 
transgenic; (f) NF-L and NF-H doubly transgenic; (g and h) NF-M and NF-H doubly transgenic. Bar, 0.5 p~m. 
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those <3 ~m in diameter that are not affected in these 
transgenic mice) have been included in this analysis. 

An Increase in NF-L Decreases Interfilament 
Distance, but Increase in Either or Both NF-M and 
NF-H Does Not Affect Interfilament Distance 

To examine how organization and interfilament spacing is 
affected by changes in subunit composition, we examined 
the filament distribution in cross-sections of ventral root 
axons (Fig. 7). Compared with the distribution in wild- 
type axons that displayed an average density of 178 +_ 18 
filaments/~m 2, filaments were packed nearly twofold more 
densely in axons from L mice (Fig. 7 b; 318 _ 26 filaments/ 
~mZ). In contrast, filament densities in M mice (Fig. 7 c) 
and H mice (Fig. 7 d) were essentially unchanged in com- 
parison with wild-type mice (Fig. 7 a). The most striking 
change was seen in axons from MH mice (Fig. 7, g and h); 
axons were almost depleted in NFs, and the axoplasmic cy- 
toskeleton was dominated by microtubules, not NFs. Also 
noteworthy is a clustered distribution of the NFs that are 
present in MH mice (Fig. 7 h), indicating that there must 
be an associative interaction between NFs. 

To test whether altered subunit composition affects in- 
terfilament spacing, we recorded the positions of each fila- 
ment in individual axons and calculated nearest neighbor 
distances for each NF. Fig. 8 displays the outcome for 
wild-type, L, M, H, LM, LH or MH mice. Increasing NF-L 
lowered the average nearest neighbor distance from a little 
more than 50 to 44 nm, consistent with the increased den- 
sity of NF coupled to inhibition of radial growth. Statistical 
comparison using two-sample t tests revealed these differ- 
ences to be significant (P = 0.0016). Increasing NF-M alone 
or both NF-M and NF-H also lowered average nearest 
neighbor distance, but more modestly (yielding average 
spacings of 47 and 48 nm, respectively). (Increases in NF-M 
and NF-H produced a higher variation between axons, 
probably the result of a smaller sampling of filament dis- 
tances caused by the lack of filaments in these axons [see 
Fig. 7, g and h]). Although increasing NF-L and NF-M to- 
gether significantly enhanced radial growth, the expres- 
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Figure 8. Changes in the nearest neighbor distance between neu- 
rofilaments in the axons from different lines of transgenic mice. 
Distribution of nearest neighbor distance between filaments in 
mice of various genotypes. Each dot represents the average near- 
est neighbor distance from a single axon. The bars mark the aver- 
age and SD calculated from values of these dots. Statistical com- 
parison using two-sample t tests reveal significant differences 
only for wild-type vs. L mice (P = 0.0016), wild-type vs. LM mice 
(P = 0.034), M vs. L mice (P = 0.019), and wild-type vs. LH mice, 
H vs. L mice, and H vs. LH mice (all P values <0.001). 

sion of additional NF-M in L mice (i.e., producing LM 
mice) did not restore wild-type interfilament spacing 
(comparison of wild-type and LM mice demonstrated sig- 
nificant differences [P = 0.034]). 

Perhaps even more surprising was that increasing NF-H 
(Fig. 8) did not significantly affect interfilament distance 
either in mice with normal or elevated NF-L content. Rather, 
the decrease in filament spacing found in NF-L singly trans- 
genic animals was unaffected by simultaneous elevation in 
LH mice of both NF-L and NF-H despite enhanced radial 
growth and a normal ratio of NF-L to NF-H (Table I). These 
data demonstrate that NF-H content alone does not spec- 
ify the nearest neighbor interfilament distances in axons. 

Discussion 

To earlier evidence that NFs are essential for the large vol- 
ume increase that begins during radial growth of axons, 
our current efforts have proven that different NF subunits 
play different yet complimentary roles in supporting ax- 
onal expansion. Hence, disturbing the normal ratio among 
the three NF subunits by increasing any individual subunit 
compromises the ability of NF to stimulate growth. More- 
over, a combined increase in NF-M and NF-H produces 
the smallest axons (with a diminished number of NF), while 
axonal calibers are significantly expanded only when in- 
creased NF-L is combined with either NF-M or NF-H (Fig. 5 
and Table I). Thus, where previous genetic efforts have 
proven that NF investment is necessary for growth in caliber 
(Sakaguchi et al., 1993; Eyer and Peterson, 1994), the present 
studies demonstrate that NF-L in combination with either 
NF-M or NF-H is sufficient to promote radial axonal growth. 

In principle, the dependence of radial growth on a com- 
bination of NF subunits could arise from an influence on 
filament number and/or on interactions between filaments 
and other axonal components, including the axonal trans- 
port machinery. Filament number could be altered by 
changes in filament assembly properties. In the mice trans- 
genic for NF-L, a twofold increase in the level of NF-L re- 
suits in a nearly twofold increase in NF density and NF 
number, but a slight decrease in axonal caliber. Clearly, in 
these mice, the twofold lowered ratio of NF-M and NF-H 
to NF-L (see Table I) does not impair the assembly of fila- 
ments, a finding that is consistent with the earlier observa- 
tions using DNA transfection that had demonstrated that 
NF were obligate heteropolymers of NF-L and NF-M or 
NF-H, but with assembly tolerating a wide range of sub- 
unit stoichiometries (Lee et al., 1993; Ching and Liem, 
1993; Nakagawa et al., 1995). On the other hand, the lower 
number of axonal filaments in M, H, and MH mice is con- 
sistent with the possibility that filament assembly may be 
impaired by raising the level of NF-M and/or NF-H rela- 
tive to NF-L. Further, the biochemical quantity of total NF 
subunits in axons of M mice exceeds that in the wild type 
(Fig. 2), but the number of filaments is lower (Fig. 7), rais- 
ing the possibility of a larger nonfilamentous pool. In fact, 
despite the increased synthesis of NF-H and NF-M in H 
and M mice, the ratio of the sum of NF-H and NF-M to 
NF-L remains the same as in the wild type, suggesting that 
this ratio is probably near the saturation level for coassem- 
bly, even in wild-type mice, and that to accommodate an 
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increase in either NF-M or NF-H one subunit, there must 
be a reciprocal loss of the other subunit. 

Concerning how NF interact with each other and how 
that relates to radial growth, the current findings have 
proven that subunit composition does affect interfilament 
distance, albeit more modestly than one might have pre- 
dicted. The increase in the number of NFs in L mice is ac- 
companied by a reduced interfilament spacing and a slight 
reduction in caliber (Figs. 7, 8, and 4 A, respectively). This 
is consistent with a widely cited model postulating that 
NF-H and/or NF-M determine interfilament spacing (e.g., 
Carden et al., 1987; Matus, 1988), probably by projecting 
their long carboxyl terminal tails (side arms) peripherally 
(Hirokawa et al., 1984; Nakagawa et al., 1995). In accord 
with this model, an increase in NF-L would lower the ratio 
of NF-H and NF-M to NF-L, thus lowering the density of 
side arms and possibly resulting in a corresponding reduc- 
tion in inter-filament spacing. On the other hand, doubling 
the number of NF-M or NF-H tails (in M or H mice) does not 
increase interfilament distance and in the case of NF-M, 
actually lowers it (Figs. 7 and 8). 

One factor that could profoundly influence interfila- 
ment spacing is the level of phosphorylation in the tail do- 
main of NF-H and NF-M. Wider interfllament distance 
correlates with high levels of phosphorylation (de Waegh 
et al., 1992; Hsieh et al., 1994; Nixon et al., 1994; Tu et al., 
1995). In a transgenic line that accumulates human NF-M 
to a level equivalent to endogenous mouse NF-M in small 
diameter (<l.5-1~m) axons of the neocortex (but not in the 
peripheral nervous system), Tu et al. (1995) found a reduc- 
tion of phosphorylated NF-H and an increase of nonphos- 
phorylated NF-H (the total level of NF-H was not mea- 
sured). In our study, changes in the level of NF subunits do 
not appear to affect the level of phosphorylation of NF-H, 
since in both M and H mice, the relative proportion of im- 
munoreactivity to SMI 31 (an antibody that reacts with 
highly phosphorylated NF-H) and to a phosphorylation- 
independent polyclonal anti-NF-H antibody remains the 
same as in the wild type (Wong et al., 1995; not shown). 
Thus, at least in the sciatic nerve, neither a decrease (as a 
result of increased NF-M) nor an increase in NF-H ap- 
pears to affect its level of phosphorylation. 

Finally, regarding the kinds of interactions that may ex- 
ist between NF, the complete absence of the nearest 
neighbor distances <20 nm in all transgenic mice mea- 
sured in this study supports the presence of short range, 
repulsive interactions that prevent very close packing of 
filaments. Superimposed on this, however, the clustered 
distribution of NFs in axons from MH mice that are rela- 
tively depleted in NFs (Fig. 7 h) demonstrates that, as had 
long been predicted by the filament cross-bridging model 
(Hirokawa et al., 1984; Nakagawa et al., 1995), at least some 
NF interactions are mediated by an associative interaction 
between filaments. Equally clear, however, is that interac- 
tions between nearest neighbor filaments do not specify 
radial growth. Nearest neighbor distances in LM mice and 
M mice are comparable, but average axonal volume differs 
by 240%. Thus, while maximal radial growth is mediated 
by a combination of NF subunits, the key property needed 
to stimulate caliber growth must include longer range in- 
teractions of the tails of NF-M and/or NF-H with other ax- 

onal components, or between NFs that are not nearest 
neighbors. 
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