The process by which mechanical stimuli are converted into cellular responses is poorly understood, in part because key molecules in this mode of signal transduction, the mechanically gated ion channels, have eluded cloning efforts. The Caenorhabditis elegans mec-4 gene encodes a subunit of a candidate mechanosensitive ion channel that plays a critical role in touch reception. Comparative sequence analysis of C. elegans and Caenorhabditis briggsae mec-4 genes was used to initiate molecular studies that establish MEC-4 as a 768-amino acid protein that includes two hydrophobic domains theoretically capable of spanning a lipid bilayer. Immunoprecipitation of in vitro translated mec-4 protein with domain-specific anti-MEC-4 antibodies and in vivo characterization of a series of mec-4lacZ fusion proteins both support the hypothesis that MEC-4 crosses the membrane twice. The MEC-4 amino- and carboxy-terminal domains are situated in the cytoplasm and a large domain, which includes three Cys-rich regions, is extracellular. Definition of transmembrane topology defines regions that might interact with the extracellular matrix or cytoskeleton to mediate mechanical signaling.

This content is only available as a PDF.