The receptivity of human erythrocytes to invasion by Plasmodium falciparum merozoites can be decreased by neuraminidase or trypsin treatment, an observation that supports a role for the erythrocyte sialoglycoproteins (glycophorins) in invasion. We have found that alpha 1-acid glycoprotein (AGP), added to in vitro cultures, can restore invasion of enzyme-treated human erythrocytes. AGP is structurally different from the glycophorins although it does carry 12% sialic acid. Its ability to restore receptivity to desialylated cells is dependent on its sialic acid complement, its concentration, and its binding to the erythrocyte surface. We present evidence that AGP forms a bridge between the merozoite and the enzyme-treated erythrocyte that allows the stronger and more complex interactions of invasion to proceed. We suggest that the glycophorins play the same role on the surface of the intact erythrocyte.

This content is only available as a PDF.
You do not currently have access to this content.